期刊文献+

介孔Fe-Cu复合金属氧化物纳米粉催化剂催化低温CO氧化(英文) 被引量:2

Preparation of mesoporous Fe-Cu mixed metal oxide nanopowder as active and stable catalyst for low-temperature CO oxidation
下载PDF
导出
摘要 以环氧丙烷为凝胶剂,采用简便低廉的无表面活性剂的溶胶-凝胶法制备了一系列不同Cu/Fe摩尔比的高比表面积介孔Fe-Cu复合氧化物纳米粉末.运用微反应器-色谱体系考察了它们在低温CO氧化反应中的催化性能.采用X射线衍射、N2吸附-脱附、热重-差热分析、程序升温还原、傅里叶变换红外光谱和透射电镜对所制样品进行了表征.结果表明,这些介孔Fe-Cu复合氧化物催化剂具有纳米晶结构、窄的孔径分布和高的比表面积,在低温CO氧化反应中表现出高的活性和稳定性.CuO的添加影响了Fe2O3的结构和催化性能.当CuO含量为15 mol%时,催化剂具有最高的比表面积和催化活性,在低温CO氧化反应中表现出较高的催化稳定性. A series of mesoporous Fe-Cu mixed metal oxide nanopowders with different Cu/Fe molar ratios and high specific surface areas were synthesized via a simple, inexpensive, surfactant-free sol-gel route using propylene oxide as the gelation agent. The catalytic behavior of the nanopowders in low-temperature CO oxidation was investigated using a microreactor-gas chromatography system. The prepared materials were characterized by X-ray diffraction, N2 adsorption-desorption, thermo-gravimetric-differential thermal analysis, temperature-programmed reduction, Fourier transform infrared spectroscopy, and transmission electron microscopy. These mesoporous Fe-Cu mixed metal oxide catalysts had nanocrystalline structures, narrow pore size distributions, and high sur-face areas; they showed high catalytic activities and stabilities in low-temperature CO oxidation. The addition of CuO to iron oxide affected the structure and catalytic performance of the iron oxide. The catalyst containing 15 mol% CuO had the highest specific surface area and catalytic activity, and showed high catalytic stability in low-temperature CO oxidation.
出处 《催化学报》 SCIE EI CAS CSCD 北大核心 2015年第10期1711-1718,共8页
基金 the supports from University of Kashan by Grant No. 158426/13
关键词 氧化铁 氧化铜 金属氧化物催化剂 介孔纳米粉 一氧化碳氧化 溶胶-凝胶法 Iron oxide Copper oxide Metal oxide catalyst Mesoporous nanopowder CO oxidation Sol-gel method
  • 相关文献

参考文献1

二级参考文献12

  • 1Zhu H Q;Qin z F;Shan W J;Shen W J Wang J G.查看详情[J],Journal of Catalysis2004267.
  • 2Budroni G;Corma A.查看详情[J],Angew Chem lnt Ed20063328.
  • 3Marino F;Descorme C;Duprez D.查看详情[J],Applied Catalysis B:Environmental,200459.
  • 4Lon M F;Song Y D;Lu J Q;Wang X Y Pu Z Y.查看详情[J],Journal of Physical Chemistry C200712686.
  • 5Zhu H Y;Shen M M;Kong Y;Hong J M Hu Y H Liu T D Dong L Chen Y Jian C Liu Z.查看详情[J],Journal of Molecular Catalysis A:Chemical,2004155.
  • 6Cao J L;Shao G S;Wang Y;Liu Y P Yuan Z Y.查看详情[J],Catalysis Communications20082555.
  • 7Guo Q;Liu Y.查看详情[J],Applied Catalysis B:Environmental,200819.
  • 8Biabani-Ravandi A;Rezaei M.查看详情[J],Chemical Engineering Journal2012141.
  • 9Cao J L;Wang Y;Yu X L;Wang S R Wu S H Yuan Z Y.查看详情[J],Applied Catalysis B:Environmental,200826.
  • 10Cheng T;Fang Z Y;Hu Q X;Han K D Yang X Z Zhang Y J.查看详情[J],Catalysis Communications20071167.

共引文献3

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部