期刊文献+

基于SVR的多变量电力消费预测 被引量:2

Prediction for Multivariable Electricity Consumption Based on SVR
下载PDF
导出
摘要 电力消费受多种因素的影响,揭示因素与电力消费的关系是当前电力消费研究的一个重要内容.应用支持向量回归机模型,利用年电力消费、人均国内生产总值、重工业比重以及电能效率的数据,分别对电力消费进行双变量和多变量的支持向量回归机预测.实验对比分析两种方式下预测值与真实值差异情况,说明了多变量方式下支持向量回归机的预测值与真实值更一致. Electricity consumption is affected by many factors, and the relationship between the factors and the electricity consumption has become one of important study contents of the electricity consumption. In this paper, the support vector regression model is used to predict the electricity consumption by two ways of bivariate and multivariate regression separately. Adopted data includes the electricity consumption per year, the per capita gross domestic product, the proportion of heavy industry and the energy efficiency. The difference between predicted values and actual values, which are obtained in two ways, is compared and analyzed by experiments. The experimental results show that the predicted value and the actual value obtained in the way of multivariate regression are more consistent than the other way.
出处 《西华师范大学学报(自然科学版)》 2015年第3期289-294,共6页 Journal of China West Normal University(Natural Sciences)
基金 四川省教育厅自然科学重点项目(12ZA172) 西华师范大学启动基金(12B023)
关键词 支持向量机 电力消费预测 支持向量回归机 support vector machines electricity consumption predicting support vector regression
  • 相关文献

参考文献7

  • 1董智,程春萌.河南电力消费弹性系数变动状况分析[J].电力系统保护与控制,2010,38(5):60-63. 被引量:3
  • 2VAPNIK V, GOLOWISH S, SMOLA A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing[ M ]. Cambridge, MA, MIT Press, 1997, 281 - 287.
  • 3杨建辉,李龙.基于SVR的期权价格预测模型[J].系统工程理论与实践,2011,31(5):848-854. 被引量:23
  • 4WU C H, HO J M, LEE D T. Travel-Time Prediction With Support Vector Regression[J]. IEEE Transactions on intelligent Transportation Systems, 2004, 5 (4) :276 - 281.
  • 5张彦周,贾利新.基于网格寻优SVR房价预测模型——以郑州市为例[J].河南科学,2014,32(8):1659-1663. 被引量:3
  • 6MOHSEN B, KEYVAN A, MORTEZA E, et al. Generalization Performance of Support Vector Machines and Neural Networks in Runoff Modeling[ J ]. Expert Systems with Applications,2009, 36 (4) :7624 - 7629.
  • 7CHANG C C, LIN C J. LIBSVM : a Library for Support Vector Machines [ EB/OL ] [ 2015 - 01 - 08 ]. http ://www. csie. edu. tw/ cjlin/libsvm/.

二级参考文献20

  • 1蔡树文.基于电力消费弹性系数的电力需求分析[J].云南社会科学,2007(1):53-57. 被引量:12
  • 2安娜,金朝嵩,刘志强.利用标准化波动率微笑预测期权价格的实证分析[J].经济数学,2007,24(1):10-14. 被引量:2
  • 3Cao L J, Tay F E H. Financial forecasting using support vector machines[J]. Neural Comput Appl, 2001(10) 184-192.
  • 4Kim K. Financial time series forecasting using support vector machines[J]. Neurocomputing, 2003, 55:307-319.
  • 5Tay F E H, Cao L J. Application of support vector machines in financial time series forecasting[J]. Omega, 2001 29:309 317.
  • 6Andreou P C, Charalambous C, Martzoukos S H. European option pricing by using the support vector regression approach[J]. Lecture Notes in Computer Science, 2009, 5768: 874-883.
  • 7Liang X, Zhang H S, Xiao J G, et al. Improving option price forecasts with neural networks and support vector regressions[J]. Neurocomputing, 2009, 72(13/15): 3055-3065.
  • 8Taxt T. Recognition of hand written symbols[J]. Pattern Recognition, 1990, 23(11): 1156-1166.
  • 9Brown C, Robinson D. Skewness and kurtosis implied by option prices: A correction[J]. Financial Res, 2002, 25 279-282.
  • 10武秀丽,张锋.时间序列分析法在房价预测中的应用——以广州市的数据为例[J].科学技术与工程,2007,7(21):5631-5635. 被引量:18

共引文献26

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部