期刊文献+

基于虚拟流体方法数值模拟作用在水—弹性固体界面的强激波(英文)

Numerical Simulation of Strong Shock Wave Impacting on Water-elastic Solid Interface by Essentially Modified Ghost Fluid Method
下载PDF
导出
摘要 文章对强激波与水—弹性固体界面的相互作用进行了数值模拟。基于欧拉方程和弹性动力学方程推导了一个用于处理流固界面的近似黎曼关系。耦合流体区域的欧拉网格和固体区域的拉格郎日网格,用水平集方法追踪流固界面的位置。并分别用五阶WENO和双特征线格式离散流体控制方程和固体控制方程及捕捉强激波在流体和固体中的传播。流固界面附近的网格节点用虚拟流体方法求解。文中还将数值结果和强激波作用在水—固壁界面,水—可压缩固体界面得到的结果进行了对比分析及验证。数值模拟结果也表明了推导的近似黎曼关系和虚拟流体方法可很好地适用于水—弹性固体耦合问题。 This paper presents numerical simulation on water-elastic solid interaction when water-solid interface is impacted by strong shock wave. An approximate Riemann problem solver is developed based on Euler equations and fundamental elastodynamics equations for the treatment of fluid-elastic solid interface. Level set method is employed to keep track of material interface while coupling Eulerian grids of fluid and Lagrangian grids of solid. Fifth-order WENO scheme and bicharacteristic scheme are used to respectively discretize governing equation of fluid and solid to capture strong shock wave propagating in water and elastic solid. Essentially Modified Ghost Fluid is employed to update grid nodes bordering water-elastic solid interface. Numerical results are verified and compared with the results by respectively assuming solid to be rigid wall and compressible. Numerical results also demonstrate that the approximate Riemann relationship and essentially Modified Ghost Fluid Method work robustly as applied to water-elastic solid interaction.
出处 《船舶力学》 EI CSCD 北大核心 2015年第9期1023-1032,共10页 Journal of Ship Mechanics
基金 Supported by Doctoral Fund of Henan Polytechnic University(Grant No.60707/011) National Natural Science Foundation of China(Grant No.11402266) the Fund of the State Key Laboratory of Disaster Prevention&Mitigation of Explosion & Impact(PLA University of Science and Technology,Grant No.DPMEIKF201401)
关键词 流固耦合 水下爆炸 虚拟流体方法 水平集方法 欧拉—拉格郎日网格耦合 fluid-structure interaction underwater explosion Ghost Fluid Method level set method Eulerian-Lagrangian grids coupling
  • 相关文献

参考文献22

  • 1Adalsteinsson D, Sethian J. The fast construction of extension velocities in level set methods[J]. J Comput. Phys., 1999, 148: 2-22.
  • 2Aivazis M, Goddard W, Meiron D, et al. A virtual test facility for simulating the dynamic response of materials[J]. Comput in Sci. and Eng., 2000, 2: 42-53.
  • 3Aslam T. A partial differential equation approach to multidimensional extrapolation[J]. J Comput. Phys., 2004, 193: 349-355.
  • 4Chung T J. Applied continuum mechanics[M]. Cambridge University Press, New York, 1996.
  • 5Fedkiw R, Aslam T, Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[J]. J Comput. Phys., 1999, 152: 457-492.
  • 6Fedkiw R. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method[J]. J Corn- put. Phys., 2002, 175: 200-224.
  • 7Greco M, Colicchio G, Fahinsen O M. A domain-decomposition strategy for a compressible multi-phase flow interacting with a structure[J]. International Journal for Numerical Methods in Engineering, 2014, 98: 840-858.
  • 8Jiang G S, Peng D. Weighted ENO schemes for Hamilton Jacobi equations[J]. SIAM J Sci. Comput., 2000, 21: 2126- 2143.
  • 9Kaboudian A, Khoo B C. The ghost solid method for the elastic solid-solid interface[J]. Journal of Computational Physics, 2014, 257: 102-125.
  • 10Li Qinyuan, Manolidis Michail, Young Yin L. Analytical modeling of the underwater shock response of rigid and elastic plates near a solid boundary[J]. Journal of Applied Mechanics-Transactions of the ASME, 2013, 80: 2.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部