期刊文献+

脓毒症急性肾损伤诊断标准研究进展 被引量:12

Advance on biomarkers for the diagnosis of sepsis combined with acute kidney injury
下载PDF
导出
摘要 尽管治疗脓毒症(Sepsis)的医疗技术快速发展,但是脓毒症患者病死率至今仍居高不下,脓毒症依然是重症监护病房(ICU)患者的主要死亡原因之一。而脓毒症并发急性肾损伤(AKI)时,患者病死率可高达67.3%,同时机械通气时间明显延长、住院时间显著增加、肾脏替代治疗(RRT)使用率明显上升,医疗费用也因此显著增加。因此,如何早期诊断脓毒症AKI并有效抑制其向急性肾衰竭方向进展,降低患者临床病死率和医疗费用,已经成为重症医学领域临床研究的重要内容之一。然而目前临床上对脓毒症AKI早期诊断仍缺乏相应有效的诊断标记物。本文对脓毒症急性肾损伤的早期诊断标记物综述如下。 With the rapid development of medical technology, the fatality rate of patients with sepsis remains high, and sepsis still constitutes one of the causes for the death of patients in Intensive Care Unit. When sepsis is com-bined with acute kidney injury (AKI), the mortality rate of the patients can reach 67.3%, and the time of mechanical ventilation is significantly prolonged, with the length of hospital stay significantly increased, the usage rate of renal re-placement therapy significantly promoted, and hospitalization costs remarkably increased. Therefore, how to diagnose sepsis combined with AKI early, effectively prevent AKI from developing into acute kidney failure, and decrease the hospitalization costs and the clinical fatality rate of patients have become one of the important points in the clinical re-search of Intensive Care Unit. However, the early diagnosis of sepsis combined with AKI still lacks corresponding ef-fective diagnostic markers. This paper depicts the early diagnostic markers for sepsis combined with AKI.
作者 尹路 邵义明
出处 《海南医学》 CAS 2015年第18期2731-2733,共3页 Hainan Medical Journal
关键词 脓毒症 急性肾损伤 标志物 Sepsis Acute kidney injury Biomarker
  • 相关文献

参考文献25

  • 1Devarajan P. Biomarkers for the early detection of acute kidney inju- ry [J]. Curt Opin Pediatr, 2011, 23(2): 194-200.
  • 2Bonomini F, Foglio E, Rodella LF, et al. Clinical biomarkers in kid- ney diseases [J]. Front Biosci (Schol Ed), 2010, 2: 591-615.
  • 3Abassi Z, Shalabi A, Sohotnik R, et al. Urinary NGAL and KIM-I : biomarkers for assessment of acute ischemic kidney injury follow- in~, neohron sDarin~ surgery [J]. J Urol. 2013. 189(4): 1559-1566.
  • 4臧芝栋,黄英姿,杨毅,郭凤梅,邱海波.尿中性粒细胞明胶酶相关脂质运载蛋白和白细胞介素-18对重症患者急性肾损伤的早期诊断价值[J].中华内科杂志,2010,49(5):396-399. 被引量:24
  • 5Ghonemy T, Amro GM. Plasma neutrophil gelatinase-associated li- poealin ('NGAL) and plasma eystatin C (CysC) as biomarker of acute kidney injury after cardiac surgery [J]. Saudi J Kidney Dis Transpl, 2014. 25(3): 582-588.
  • 6范银强,邵义明,李佳,刘丽珍,谢玉柳,尹路.连续性肾脏替代治疗对脓毒症急性肾损伤患者NGAL的表达影响及其机制探讨[J].中国急救医学,2013,33(6):494-498. 被引量:30
  • 7Zhou Y, Vaidya VS, Brown RP, et al. Comparison of kidney injury molecule--1 and other nephrotoxicity biomarkers in urine and k~l- ney following acute exposure to gentamicin, mercury, and chromi- um [J]. Toxicol Sci, 2008, I01(I): 159-170.
  • 8Ichimura T, Asseldonk EJ, Humphreys BD, ctal. Kidney injury molc- cule-I is a phosphatidylscrine receptor that confers a phagocytic phe- notype on epithelial cells [J]. J Clin Invest, 2008, I 18(5): 1657-1668.
  • 9Chaturvcdi S, Farmer T, Kapke GF. Assay validation for KIM-I: hu- man urinary renal dysfunction biomarker [J]. Int J Biol Sci, 2009, 5 (2): 128-134.
  • 10Huang Y, Don-Wauchope AC. The clinical utility of kidney injury molecule I in the prediction, diagnosis and prognosis of acute kid- ney injury: a systematic review [J]. Inflamrn Allergy Drug Targets, 2011, 10(4): 260-271.

二级参考文献51

  • 1Duplus E, Glorian M, Forest C. Fatty acid regulation of gene transcription. J BiolChem, 2000, 275: 30749-30752.
  • 2Arici M, Chana R, l.ewington A, et al. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptorgamma. J Am Soc Nephrol, 2003, 14: 17-27.
  • 3Zager R A, Johnson A C, Hanson S Y. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int, 2005, 67:111-121.
  • 4Zager R A. Plasma membrane cholesterol: critical determinant of cellular energetics and tubular resistance to attack. Kidney Int, 2000, 58: 193-205.
  • 5Feldkamp T, Kribben A, Roeser N F, et al. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation. Am J Physiol Renal Physiol, 2006, 290: F465-F477.
  • 6Noiri E, Nakao A, Uchida K, et al. Oxidative and nitrosative stress in acute renal ischemia. Am J Physiol Renal Physiol, 200I, 281: F948-F957.
  • 7Chmurzynska A. The multigene family of fatty acid-binding proteins (FABPs):function, structure and polymorphism. J Appl Genet, 2006, 47: 39-48.
  • 8Maatman R G, Van Kuppevelt T H, Veerkamp J H. Two types of fatty acid-binding protein in human kidney. Isolation, characterization and localization. Biochem J, 1991, 273: 759-766.
  • 9Richieri G V, Ogata R T, Kleinfeld A M. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J Biol Chem, 1994, 269: 23918-23930.
  • 10Sugaya T, Noiri E, Yamamoto T, et al. L Type fatty acid- binding protein ameliorates renal ischemia reperfusion injury in human L-FABP transgenie mice. Nephrology, 2005, 10 (Suppl) : A133.

共引文献69

同被引文献89

引证文献12

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部