期刊文献+

薄煤层采掘设备故障诊断系统设计与仿真

Design and Simulation for the Thin Seam Mining Equipment Fault Diagnosis System
下载PDF
导出
摘要 研究薄煤层采掘设备故障诊断问题,采用故障诊断实验平台模拟采掘设备的轴承故障。文中设计了一个基于模型和BP神经网络相结合的机械故障诊断诊断系统。利用轴承的故障模型来指导特征参数的提取,并将这些参数作为BP神经网络的输入。通过对照试验表明,基于故障模型和BP神经网络相结合的诊断方式,比单纯的BP神经网络的诊断具有更高的精度。 Fault diagnosis of thin seam mining equipment is studied to simulate bearing failure of mining equipment on a fault diagnosis platforrrL Diagnosis system based on combination of model and BP neural network is designed in this paper. Using the bearing's fault model to guide the extraction of characteristic parameter, and the parameter is used as the input of the BP neural network. Through controlled trials, it shows that the diagnostic method combining model and BP neural net- work has a higher accuracy than the simple BP neural network diagnosis.
出处 《计算机与数字工程》 2015年第9期1615-1617,1626,共4页 Computer & Digital Engineering
关键词 薄煤层采掘设备 轴承故障模型 BP神经网络 故障诊断 thin seam mining equipment, bearing failure mode, BP neural network, fault diagnosis
  • 相关文献

参考文献7

二级参考文献88

  • 1陆爽,李萌.基于小波神经网络的滚动轴承故障诊断[J].化工机械,2004,31(3):155-158. 被引量:12
  • 2高立新,张健,张建宇,张玉奎,崔玲丽.低速重载大型齿轮箱的故障诊断[J].中国冶金,2005,15(9):29-32. 被引量:4
  • 3田质广,董振东,孟宪尧.基于Kohonen神经网络的燃气轮机故障诊断[J].热能动力工程,2005,20(6):562-564. 被引量:7
  • 4王国栋,张建宇,高立新,胥永刚,张雪松.小波包神经网络在轴承故障模式识别中的应用[J].轴承,2007(1):31-34. 被引量:17
  • 5Isermann R, Balle E Trends in the application of model based fault detection and diagnosis of technical processes[J]. Control Engineering Practice, 1997, 5(5): 709-719.
  • 6Parthasarathy K, Jay H L. Diagnostic tools for multivariable model-based control system[J]. Industrial and Engineering Chemistry Research, 1997, 36(7): 2725- 2738.
  • 7Anne Raich, Ali Cinar. Statistical process monitoring and disturbance diagnosis in multivariable continuous processes [J]. AIChE J, 1996, 42(4): 995-1009.
  • 8Jie Chen, Ron J. Patton. Robust model-based fault diagnosis for dynamic systems[M]. Boston: Kluwer Academic Publishers, 1999.
  • 9Bagheri F, Khaloozaded H, Abbaszadeh K. Stator fault detection in induction machines by parameter estimation using adaptive Kalman filter[C]. Proc of 2007 Mediterranean Conf on Control and Automation. Piscataway: IEEE, 2007: 1-6.
  • 10Li L L, Zhou D H. Fast and robust fault diagnosis for a class of nonlinear system: Detectability analysis[J]. Computers and Chemical Engineering, 2004, 28(12): 2635-2646.

共引文献299

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部