期刊文献+

粗糙集结合神经网络的哮喘辨证分型法 被引量:3

Asthma Syndrome Differentiation Method of Rough Set Combined with Neural Network
下载PDF
导出
摘要 传统中医辨证模式都是依靠个人经验进行观察判断和分析,主观性强,利用智能信息处理方法,能使中医诊断中的辩证得到客观量化。利用粗糙集理论对数据的属性进行约简,从而简化决策表,寻求症候辩证的更优解,以达到更高的准确率。将粗糙集与BP神经网络相结合对哮喘进行辨证分型,收敛效果和准确率方面都有较大提高,实验结果表明该融合方法对训练速度有很大提高,准确率可以达到90%,效果大大好于使用BP神经网络单分类器。 Syndrome differentiation of Traditional Chinese Medicine(TCM) rely on personal experience to observe, judge and analysis, such behavior has strong subjectivity. Using the method of intelligent information processing can make the quantization of syndrome differentiation in TCM diagnosis objectively. Using the theory of rough set to reduce the prop- erty of data, so as to simplify the decision table. Finding the more optimal solution for symptoms dialectical, in order to a- chieve a higher accuracy. The convergence effect and accuracy of asthma syndrome differentiation method of rough set com- bined with BP neural network has improved greatly. Experimental results show that the fusion method can improve the train- ing speed a lot and its accuracy can reach 90%, the effect is greatly better than that of using single BP neural network classifier.
出处 《计算机与数字工程》 2015年第9期1622-1626,共5页 Computer & Digital Engineering
基金 青岛市科技计划(编号:11-2-4-3-(6)-jch) 山东省自然科学基金(编号:2013ZRB019B3)资助
关键词 粗糙集 BP神经网络 哮喘 辨证分型 rough set, BP neural network, asthma, syndrome differentiation
  • 相关文献

参考文献3

二级参考文献14

  • 1刘进生,魏毅强,王绪柱.区间数判断矩阵的建立及其权重计算[J].系统工程,1993,11(3):42-46. 被引量:40
  • 2Saaty T L.Decision making with the AHP:why is the principal eigenvector necessary[J].European Journal of Operation Research,2003,145(1):85-91.
  • 3Tam M C,Tummala V M.An application of AHP in vendor selection of a telecommunication system[J].Omega,2001,29(2):171-182.
  • 4Sugihara K,Maeda Y,Tanaka H.Interval evaluation by AHP with rough set concept[C] //Proceeding on The Seventh International Workshop on Rough Sets,Fuzzy Sets,Data Mining,and Granular-Soft Computing.1999.
  • 5Alam S S,Shrabonti G.Ranking by AHP:A rough approach[C] //Proceeding of the Fifth International Conference on Information Fusion,2002,1(7):185-190.
  • 6曾黄麟.粗糙集理论及其应用[M].重庆:重庆大学出版社,1996..
  • 7Pawlak Z.Rough Sets[J].International Journal of Information and Computer Science.1982,11:341-356.
  • 8Zdizislaw Pawlak,Jerzy Grzymala-Busse,Roman Slowinski,Wojciech Ziarko.Rough sets[J].Communication of the ACM,1995,38 (11):89-95.
  • 9PAWLAK Z. Rough Set[J]. Communication of ACM, 1995,38( 11 ) :89-95.
  • 10PAWLAK Z. Rough Set theory and its application to data analysis [ J ]. Cybernetics and Systems, 1998,29 (7) :661-668.

共引文献34

同被引文献27

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部