期刊文献+

压力作用下星形胶质细胞线粒体形态与功能异常的研究

Research on changes of mitochondria morphology and function under high pressure in rat astrocytes
下载PDF
导出
摘要 目的研究压力对视网膜星形胶质细胞(RA)的损伤作用及可能的线粒体机制,为进一步阐明青光眼视神经损害的复杂分子机制提供实验数据。方法对体外培养的RA施加30 mm Hg(1 mm Hg=0.133kP a)压力,模拟慢性高眼压。分别在加压后不同时间点观察细胞线粒体形态及活性氧(ROS)含量变化,并收集细胞,制备细胞匀浆,采用生物化学方法检测5个线粒体呼吸链复合物(MRCC)和总超氧化物歧化酶(SOD)、Cu/Zn-SOD及Mn-SOD的活性变化。结果压力作用后,RA线粒体的分裂及ROS含量均增加;MRCCⅠ、Ⅱ、Ⅲ、Ⅳ的活性下降,MRCCⅤ的活性随加压时间的延长逐渐升高;各型SOD活性均降低,但Mn-SOD活性下降最迅速、幅度最大。结论压力可以引起RA线粒体形态和功能异常,导致RA内活性氧增加及抗氧化能力下降等损伤性变化。 Objective To investigate the damage of high pressure on retina astrocytes (RA) mitochondria and to explore the underlying mitochondrial mechanisms for further clarification of the complex molecular mechanisms of glaucoma optic nerve damage. Methods RA were cultured under 30 mm Hg pressure to mimic ocular chronic hypertension. Mitochondrial morphology and reactive oxygen species (ROS) level were observed by using the corresponding fluorescent probe at different time point. Mitochondrial complex and SOD activities were detected by biochemistry methods. Results The division of mitochondria and mount of ROS production both increased under high pressure. The activity of mitochondrial complex I,Ⅱ, Ⅲ, Ⅳ all declined while mitochondrial complex Vincreased with the prolonging of pressurization time. T-SOD, Cu/Zn-SOD and Mn-SOD activities all decreased, whereas Mn-SOD activities declined earliest and most significantly. Conclusions High pressure causes mitochondria morphology change and directly leads to mitochondrial dysfunction, resulting in the increase of ROS production and reduction of antioxidation ability in rat astrocytes.
出处 《中国眼耳鼻喉科杂志》 2015年第5期311-314,317,共5页 Chinese Journal of Ophthalmology and Otorhinolaryngology
基金 国家自然科学基金(NSFC81470624 NSFC81470625) 上海市卫生局局级科研项目(20124073)
关键词 压力 星形胶质细胞 线粒体呼吸链复合物活性 线粒体分裂 活性氧 超氧化物歧化酶 Pressure Astrocytes Mitochondrial respiratory chain complex activity mitochondrial fission Reactive oxygen species Superoxide dismutase
  • 相关文献

参考文献14

  • 1Morgan JE. Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage[J]. Eye(Lond) , 2000, 14 ( Pt 3B) : 437-344.
  • 2Son JL, Soto I, Oglesby E, et al. Glaucomatous optic nerve injury involves early astrocyte reactivity and late oligodendrocyte loss [ J ]. Glia, 201'0, 58(7) :780-789.
  • 3Hernandez MR. The optic nerve head in glaucoma : role of astrocytes in tissue remodeling[J].Prog Retin Eye Res, 2000, 19 ( 3 ) : 297 -321.
  • 4Hernandez MR, Varela HJ. Astrocyte responses in optic nerve heads with primary open angle glaucoma[J]. Invest Ophth Vis Sci, 1997, 38(4) :789-789.
  • 5Dai C, Khaw PT, Yin ZQ, et al. Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure [J]. Glia, 2012,60 ( 1 ) : 13-28.
  • 6Sesaki H, Jensen RE. Division versus fusion: Dnmlp and Fzolp antagonistically regulate mitochondriaL shape[ J]. CeLl Biol, 1999, 147(4) :699-706.
  • 7Wu JH, Zhang SH, Gao FJ, et al. RNAi screening identifies GSK3 beta as a regulator of DRPI and the neuroprotection of lithium chloride against elevated pressure involved in duwnregulation of DRP1 [ J]. Neurosci Lett ,2013, 554:99-104.
  • 8Zhang N, Wang SL, Li Y, et al. A selective inhibitor of Drpl, mdivi-1, acts against cerebral ischemia/reperfusion injury via an anti-apoptotic pathway in rats [ J]. Neurosei Lett, 2013, 535: 104-109.
  • 9Park SW, Kim KY, Lindsey JD, et al. A Selecti,Je inhibitor of Drpl, Mdivi-1, increases retinal ganglion cell survival in acute ischemic mouse retina[J]. Invest Ophthalmol Vis Sci , 2011,52 (5) :2837-2843.
  • 10Xie NC, Wang C, Lion YJ, et al. A selective inhibitor of Drpl, Mdivi-1, protects against cell death of hippocampal neurons in pilocarpine-induced seizures in rats[ J]. Neurosci Lett ,2013, 545: 64-68.

二级参考文献42

  • 1Scheffier IE. A century of mitochondria research: Achievements and perspectives. Mitochondrion, 2001, 1(1): 3-31.
  • 2Kibertis PA. Mitochondria makes a comeback. Science, 1999, 283:1475-81.
  • 3Kagawa Y, Cha SH, Hasegowq K, et al. Regulation of energy metabolism in human cell in aging and diabetis:F1F0, mtDNA, UCP and ROS. Biochem Biophys Res Commun, 1999, 266 (3): 662-76.
  • 4Wallace DC. A mitochondrial pradigm of metabolic and degenerative diseases, aging and cancer: A dawn for evolutinary medicine. Annu Rev Genet, 2005, 39:359-407.
  • 5Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol, 2007, 292:C670-86.
  • 6Chance B, Sies H, Boveris A. Hydroperioxide metabolism in mammalian oranges. Physiol Rev,. 1979, 59(3): 527-605.
  • 7Giorgio M, Migliaccio E, Orsini F, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis.Cell, 2005, 122: 221-33.
  • 8Skulachev VP. A biochemical approach to the problem of aging: "Megaproject" on membrane-penetrating ions. The first results and prospects. Biochemistry (Moscow), 2007, 72, 12:1385-96.
  • 9Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep, 1997, 17(3): 3-8.
  • 10Liu SS. Generation, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep, 1997, 17: 259- 72.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部