期刊文献+

考虑矩阶数的最大熵方法及其在水文随机模拟中的应用 被引量:4

POME with constraints of moments and its application to hydrological stochastic simulations
原文传递
导出
摘要 最大熵原理(POME)是一种理论完善的非参数分布推断方法,近年来已开始应用于水科学领域。POME本质上作为多约束最优化问题,所得分布取决于约束条件的形式。以往基于POME的研究缺乏对约束条件的讨论,即主观规定最大矩阶数,这可能导致所得最大熵分布非最优分布。针对该问题,首先对常用分布下样本矩的收敛性进行讨论,并给出了确定最优矩阶数的理论–经验分析思路,从而提出了一种考虑矩阶数的POME推断框架。应用该方法对长江、黄河代表测站的水文分布模式进行识别,并探讨了POME在水文随机模拟中的适用性。对矩阶数的讨论进一步完善了POME方法,实例结果表明随机序列基本反映实测序列的统计特征,模拟效果优良。 The principle of maximum entropy (POME), a non-parametric inference technique with complete mathematical framework, has been increasingly applied in water resources. POME is substantially an optimization problem and the probability density function (PDF) is derived with forms of constraints. However, previous studies have focused little attention on constraints that are in form of moments, subjectively specifying the order of moments, which may have limitations in determining optimal POME distributions. The main contribution of this study is to present a POME framework considering the optimal order of moments, with analyses of the convergence of different moments with common distributions and a theoretical-empirical approach determining the optimal order of moments. This technique has been applied with hydrological data collected from the Yangtze River and the Yellow River. The series simulated with the technique is analyzed by comparison with measured series. Results indicate a good performance with all the measured statistics falling within the boxplot.
出处 《水力发电学报》 EI CSCD 北大核心 2015年第9期20-28,共9页 Journal of Hydroelectric Engineering
基金 国家自然科学基金(No.41071018 51190091) 国家重点基础研究发展计划(2013CB956503) 教育部新世纪优秀人才支持计划(NCET-12-0262) 教育部博士点基金(20120091110026) 江苏省教育厅青蓝工程 南京大学青年骨干教师和优秀中青年学科带头人培养计划资助项目 太湖饮用水源地持久性有机污染物风险评估研究TH2014307
关键词 最大熵原理 分布识别 优化 非参数推断 随机水文 POME distribution inference optimization non-parametric method stochastichydrology
  • 相关文献

参考文献24

  • 1中华人民共和国水利部.SL44-2006水利水电工程设计洪水计算规范[S].北京:中国水利水电出版社.2006.
  • 2中华人民共和国水利部.SL278-2002水利水电工程水文计算规范[S].北京:中国水利水电出版社,2002.
  • 3Bob6e B, Ashkar K The gamma family and derived distributions applied in hydrology [M]. Littleton, Colorado, USA: Water Resources Publications, 1991.
  • 4Rosbjerg D, Madsen H, Rasmussen P F. Prediction in partial duration series with generalized pareto-distributed exceedances [J]. Water ResourcesResearch, 1992, 28(11): 3001-3010.
  • 5Katz R W, Parlange M B, Naveau P. Statistics of extremes in hydrology [J]. Advances in water resources, 2002, 25(8): 1287-1304.
  • 6Adamowski K. Nonparametric kernel estimation of flood frequencies [J]. Water Resources Research, 1985, 21(11): 1585-1590.
  • 7Jaynes E T. Information theory and statistical mechanics [J]. Physical review, 1957, 106(4): 620.
  • 8Singh V. Entropy-based parameter estimation in hydrology [M]. Springer, 1998.
  • 9Singh V P, Rajagopal AK, Singh K. Derivation of some frequency distributions using the principle of maximum entropy (POME) [J]. Advances in Water Resources, 1986, 9(2): 91-106.
  • 10王栋,朱元甡.最大熵原理在水文水资源科学中的应用[J].水科学进展,2001,12(3):424-430. 被引量:54

二级参考文献27

  • 1冯国章.极限水文干旱历时概率分布的解析与模拟研究[J].地理学报,1994,49(5):457-466. 被引量:20
  • 2金双彦,徐建华,田中岳,毛利强.黄河三门峡站天然年径流量枯水段分析[J].人民黄河,2006,28(7):12-13. 被引量:5
  • 3黄忠恕.波谱分析方法在水文上的应用[J].水文,1983,3:13-20.
  • 4徐宗学.熵极大识别准则及其应用[J].武汉水利电力学院学报,1987,20(6):60-70.
  • 5马力.最大熵原理与概率分布函数[J].数理统计与应用概率,1993,(4):78-84.
  • 6李元章,水文,1985年,1期,22页
  • 7黄忠恕,水文,1983年,3期,13页
  • 8Ran A R,Proc Third Lot Symposium on Stochastic Hydraulics,1980年,165页
  • 9Singh V P,Hydrological Sciences J,1995年,4卷,165页
  • 10Singh V P,Water Resour Magt,1995年,9卷,811页

共引文献76

同被引文献47

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部