期刊文献+

采用确定性测量矩阵的宽带压缩采样的研究 被引量:1

Broadband Compressive Sampling with Deterministic Measurement Matrix
下载PDF
导出
摘要 在对宽带信号进行处理的过程中,常运用压缩感知的理论来获得有效的信息。而在实践压缩感知理论的压缩采样的结构中,调制宽带转换器的采样结构更加适合用于处理宽频带信号。文中研究了调制宽带转换器的压缩采样原理,也介绍了随机测量矩阵和确定性测量矩阵。分别将随机矩阵和确定性矩阵作为该调制宽带转换器的测量矩阵,对比分析了该采样结构的重构性能。研究了在确定性测量矩阵的基础上,该采样结构在折叠和非折叠条件下的信号重构性能,同时,也对系统的通道数目对性能重构和信噪比的影响进行了补充分析。 In the processing of broad signal, the theory of compressed sensing is usually used to acquire effective information. However, of among the compressive sampling structures in practicing this theory, the sampling structure for modulated wideband converter is more suitable to processing broadband signal. The compressive sampling principle of modulated wideband converter is described in this paper, random measurement matrix and determinate measurement matrix also discussed in this paper. With random matrix and deterministic matrix respectively as the measurement matrix of this structure, the reconstruction performances of these two matrixes are compared and analyzed, and based on deterministic measurement matrix, the reconstruction performances in folded and unfolded conditions technically explored. Meanwhile, the influence of channel numbers on the performance reconstruction and signal-to-noise ratio is also analyzed.
出处 《通信技术》 2015年第10期1111-1115,共5页 Communications Technology
基金 国家自然科学基金(No.61271354)~~
关键词 压缩采样 宽带信号 调制宽带转换器 压缩感知 测量矩阵 compressive sampling broadband signal modulated wideband converter compressed sensing measurement matrix
  • 相关文献

参考文献14

  • 1Mishali M,Eldar Y C. Blind Multi-Band Signal Recon- struction: Gompressed Sensing for Analog Signals [ J ]. IEEE Trans. on Signal Processing, March 2009, 57 (30) :993-1009.
  • 2王蓟翔,张扬.基于矩阵分解的压缩感知算法研究[J].通信技术,2011,44(6):138-140. 被引量:10
  • 3Mishali M, Eldar Y C, Dounaevsky O. Xampling : Analog to Digital at Sub- Nyquist Rates [ J ]. IET Circuits, De- vices and Systems, 2011, 5:8-20.
  • 4Kirolos S, Laska J, Wakin M. Analog- to- Information Conversion via Random Demodulation [ C ]. In Proceed- ings of the IEEE Dallas Circuits and Systems Workshop. Richardson, USA : IEEE, 2006:71-74.
  • 5Boufounos P, Baraniuk R G. Sigma Delta Quantization for Compressive Sensing [ C ]. Conference on Wavelets XII, 6701:70104-70104, 2007.
  • 6Raz G M. Method and System for Nonlinear and Affine Signal Processing. U. S. Patent 7 173 555, 2007.
  • 7Kong X, Petre P, Matic R, et al. An Analog-to Informa- tion Converter for Wideband Signals using a Time Enco- ding Machine[C]. In Digital Signal Processing Workshop and IEEE Signal Processing Educational Workshop, 2011:414-419.
  • 8Mishali M, Eldar Y C. From Theory to Practice: Sub- Nyquist Sampling of Sparse Wideband Analog Signals [ J ]. IEEE Journal of Selected Topics on Signal Process- ing, Apr. 2010, 4:375-391.
  • 9GAN Lu,WANG Hua-li. Deterministic Binary Sequences for Modulated Wideband Converter [ C ]. SAMPTA2013, Bremen German, 2013:264-267.
  • 10ZHENG Shi-lian, YANG Xiao-niu. Wideband Spectrum Sensing in Modulated Wideband Converter based Cogni- tive Radio System [ C ]. Communications and Information Technologies ( ISCIT), 2011 11 th International Sympo- sium on, 2011:114-119.

二级参考文献2

共引文献9

同被引文献26

  • 1Mallat S G,ZHANG Z. Matching Pursuits with Time-Frequency Dictionaries [ J ] . IEEE Transactions on Sig-nal Processing, 1993,41(12) : 3397—3415.
  • 2Mallat S G, ZHANG Z. Matching Pursuits with Time- Frequency Dictionaries [ J ]. IEEE Transactions on Sig- nal Processing, 1993, 41 (12) : 3397-3415.
  • 3Donoho D L. Compressed Sensing[ J]. IEEE Trans. In-form. Theory, 2006, 52(4) : 1289-1306.
  • 4Aharon M,Elad M,Bruckstein A. K - SVD : An Algo-rithm for Designing Overcomplete Dictionaries for SparseRepresentation [ J ]. IEEE Transactions on Signal Proces-sing, 2006, 54(11) :4311-4322.
  • 5Mehta S, Maclain I,Baiely R, et al. Learning Overcom-plete Dictionaries based on Parallel Atom Updating [ C]//Machine Learning for Signal Processing (MLSP). 20131EEE International Workshop on: IEEE,2013 :l-5.
  • 6Rubinstein R,Peleg T,Elad M. Analysis K-SVD: ADictionary - Learning Algorithm for the Analysis SparseModel [ J ]. Signal Processing IEEE Transactions on,2013 , 61(3) :661-677.
  • 7Aharon M, Elad M. Sparse and Redundant Modeling ofImage Content Using An Image — Signature - Dictionary[J]. Siam Journal on Imaging Sciences,2007,1(3):228-247.
  • 8Hassanieh H,Indyk P,Katabi D,et al. Nearly OptimalSparse Fourier Transform [ J ]. Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing,2012:563-578.
  • 9Hosein Mohimani, Massoud Babaie-Zadeh, Christian Jut-ten. A Fast Approach for Overcomplete Sparse Decomposi-tion based on Smoothed 10 Norm[ J]. IEEE Transactions onSignal Processing ,2009,57 (1) :289-301.
  • 10Devore R A. Deterministic Constructions of CompressedSensing Matrices[ J]. Journal of Complexity,2007,23(4 - 6) : 918-925.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部