期刊文献+

基于对称非负矩阵分解的重叠社区发现方法 被引量:4

Overlapping community discovery method based on symmetric nonnegative matrix factorization
下载PDF
导出
摘要 针对重叠社区中的重要节点(重叠节点、中心节点、离群节点)及其固有的重叠社区结构的发现问题,提出了一种新的对称非负矩阵分解算法。首先将误差逼近项和非对称惩罚项的和作为目标函数,然后基于梯度更新的原则及非负约束条件推导出该算法。对5个实际网络进行了仿真实验,结果显示所提算法能将实际网络的重要节点及其固有的社区结构发现出来。从社区发现结果的平均导电率和算法的执行时间看,所提方法优于非负矩阵分解社区发现(CDNMF)方法;从准确率和召回率的调和平均值的加权平均值看,所提方法比较适合较大数据集的重叠社区发现。 In view of the important nodes ( including overlapping nodes, central nodes and outlier nodes) in overlapping community and the inherent overlapping community structure discovery problem, a new symmetric nonnegative matrix factorization algorithm was proposed. First, the sum of the error approximation and the asymmetric penalty term was used as the objective function. Then the algorithm was derived by using the principle of gradient update and the nonnegative constraint conditions. Simulation experiments were carried out on five real networks. The results show that the proposed algorithm can find the important nodes of the actual networks and their inherent community structures. The average conductance and the algorithm's execution time of the community discovery results are better than those of Community Detection with Nonnegative Matrix Factorization (CDNMF) method; the weighted average of the accuracy and recall rate's harmonic mean value shows that the proposed method is more suitable for the large databases.
出处 《计算机应用》 CSCD 北大核心 2015年第10期2742-2746,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61175123) 福建省教育厅(A类)项目(JA15139) 福州市科技计划项目(2014-G-80) 福建省青年创新项目(2014J05002)
关键词 复杂网络 重叠社区 社区发现 对称非负矩阵分解 邻接矩阵 complex network overlapping community community discovery symmetric nonnegative matrix factorization adjacency matrix
  • 相关文献

参考文献32

  • 1汪小帆,李翔,陈关荣.复杂网络理论及应用[M].北京:清华大学出版社,2006.
  • 2WASSEMAN S, FAUST K. Social network analysis [ M]. Cam- bridge: Cambridge University Press, 1994:32 - 35.
  • 3WATIS D J, STROQATZ S H. Collective dyramics of 'small-world' networks [ J]. Nature, 1998, 393(6684) : 440 -442.
  • 4NEWMAN M E J. The structure of scientific collaboration networks [ J]. The Structure of Scientific Collaboration Networks, 2001, 98 (2) : 404 - 409.
  • 5WILLIAMS R J, MARTINEZ N D. Simple rules yield complex food Webs[ J]. Nature, 2000, 404(6774) : 180 - 183.
  • 6FELL D A, WAGNER A. The small world of metabolism [ J]. Na- ture Biotechnology, 2000, 18(11) : 1121 - 1122.
  • 7FALOUTSOS M, FALOUTSOS P, FALOUTSOS C. On power-law relationships of the lntcrnet topology [ J]. Computer Communications Review, 1999, 29:251 - 262.
  • 8陈俊宇,周刚,熊小兵.一种采用邻居投票机制的重叠社区发现方法[J].小型微型计算机系统,2014,35(10):2272-2277. 被引量:5
  • 9NEWMAN M E J. Fast algorithm for detecting community structure in networks [ J]. Physical Review E, 2004, 69(6) : 1 - 5.
  • 10金弟,刘大有,杨博,刘杰,何东晓,田野.基于局部探测的快速复杂网络聚类算法[J].电子学报,2011,39(11):2540-2546. 被引量:19

二级参考文献118

  • 1Strogatz S H.Exploring complex networks[J].Nature,2001,410:268-276.
  • 2Garey M R,Johnson D S.Computers and Intractability:A Guide to the Theory of NP-Completeness[M].San Francisco:W.H Freeman Publishers,1979.
  • 3Scott J.Social Network Analysis:A Handbook[M].2 nd ed.London:Sage Publications,2002.
  • 4Fiedler M.Algebraic connectivity of graphs[J].Czech,Math J,1973,23:298-305.
  • 5Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 6Gu M,Zha H,Ding C,et al.Spectral relaxation models and structure analysis for k-way graph clustering and bi-clustering[R].CSE-01-007.Penn State University,2001.
  • 7Meila M,Shi J.Learning segmentation by random walks[C]//NIPS.2000:873-879.
  • 8Muff S,Rao F,Cflisch A.Validation of network clustrizations[J].arXiv:cond-mat,2005:0503252.
  • 9Newman M E J,Girvan M.Finding and evaluating community structure in networks[J].Physical Review E.,2004,69 (2):026113.
  • 10White S,Smyth P.A spectral clustering approach to finding communities in graph[J].SIAM Data Mining,2005.

共引文献113

同被引文献14

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部