期刊文献+

基于标签相关性的K近邻多标签分类方法 被引量:12

Multi-label K nearest neighbor algorithm by exploiting label correlation
下载PDF
导出
摘要 针对K近邻多标签(ML-KNN)分类算法中未考虑标签相关性的问题,提出了一种基于标签相关性的K近邻多标签分类(CML-KNN)算法。首先,计算出标签集合中每对标签间的条件概率;其次,对于即将被预测的标签,将其与已经预测的标签间的条件概率进行排序,求出最大值;最后,将最大值跟对应标签值相乘同时结合最大化后验概率(MAP)来构造多标签分类模型,对新标签进行预测。实验结果表明,所提算法在Emotions数据集上的分类性能均优于ML-KNN、Adaboost MH、RAk EL、BPMLL这4种算法;在Yeast、Enron数据集上仅在1-2个评价指标上低于MLKNN与RAk EL算法。由实验分析可知,该算法取得了较好的分类效果。 Since the Multi-Label K Nearest Neighbor (ML-KNN) classification algorithm ignores the correlation between labels, a multi-label classification algorithm by exploiting label correlation named CML-KNN was proposed. Firstly, the conditional probability between each pair of labels was calculated. Secondly, the conditional probabilities of predicted labels and the conditional probability of the label to be predicted were ranked, then the maximum was got. Finally, a new classification model by combining Maximum A Posteriori (MAP) and the product of the maximum and its corresponding label value was proposed and the new label value was predicted. The experimental results show that the performance of CML-KNN on Emotions dataset outperforms the other four algorithms, namely ML-KNN, AdaboostMH, RAkEL, BPMLL, while only two evaluation metric values are lower than those of ML-KNN and RAkEL on Yeast and Enron datasets. The experimental analyses show that CML-KNN obtains better classification results.
出处 《计算机应用》 CSCD 北大核心 2015年第10期2761-2765,共5页 journal of Computer Applications
基金 安徽省科技攻关计划项目(1301b042020) 高等学校博士学科点专项科研基金资助项目(20133401110009) 安徽大学研究生学术创新项目(Ygh100166)
关键词 标签相关性 K近邻多标签 条件概率 多标签分类 label correlation Multi-Label K Nearest Neighbor (ML-KNN) conditional probability muhi-label classification
  • 相关文献

参考文献13

  • 1TSOUMAKAS G, KATAKIS I. Muhi-label classification: an over- view[ J]. Database Technologies Concepts Methodologies Tools and Applications, 2007,2007(3): 1 -13.
  • 2BOUTELL M R, LOU J, SHEN X, et al. Learning multi-label scene classification[ J]. Pattern Recognition, 2004, 37(9) : 1757 - 1771.
  • 3HUANG S-J, ZHOU Z-H. Multi-tabel teaming by exploiting label correlations locally[ C]// AAAI 2012: Proceedings of the 26th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2012:949 -955.
  • 4ZHANG M, ZHANG K. Multi-label learning by exploiting label de- pendency[ C]//KDD 2010: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2010:999 - 1008.
  • 5ZHANG M, ZHOU Z. Multi-label neural networks with applications to functional genomics and text categorization [ J]. IEEE Transac- tions on Knowledge and Data Engineering, 2006, 18(10) : 1338 -1351.
  • 6SCHAPIRE R E, SINGER Y. BoosTexter: a boosting-based system for text categorization[ J]. Machine Learning, 2000, 39(2/3) : 135 - 168.
  • 7ZHANG M-L, ZHOU Z-H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7) :2038 - 2048.
  • 8TSOUMAKAS G, VLAHAVAS I. Random k-Labelsets: an ensem- ble method for multi-label classification [ C]// ECML 2007: Pro- ceedings of the 18th European Conference on Machine Learning, LNCS 4701, Berlin: Springer-Verlag, 2007:406 -417.
  • 9READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[ C]//ECML PKDD 2009: Proceedings of the 2009 European Conference on Machine Learning and Knowl- edge Discovery in Databases, LNCS 5782. Berlin: Springer-Verlag, 2009:254-269.
  • 10郑伟,王朝坤,刘璋,王建民.一种基于随机游走模型的多标签分类算法[J].计算机学报,2010,33(8):1418-1426. 被引量:57

二级参考文献78

  • 1Shen X,Boutell M,Luo J,Brown C.Multi-label machine learning and its application to semantic scene classification//Proceedings of the 2004 International Symposium on Electronic Imaging.San Jose,California,USA,2004:18-22.
  • 2Hullermeier E,Furnkranz J,Cheng W,Brinker K.Label ranking by learning pairwise preferences.Artificial Intelligence,2008,172(16):1897-1916.
  • 3Read J.A pruned problem transformation method for multi-label classification//Proceedings of the New Zealand Computer Science Research Student Conference.New Zealand,2008:143-150.
  • 4Tsoumakas G,Vlahavas I.Random k-labelsets:An ensemble method for multilabel classification//Proceedings of the ECML.Warsaw,Poland,2007:406-417.
  • 5Schapire R,Singer Y.BoosTexter:A boosting-based system for text categorization.Machine Learning,2000,39(2):135-168.
  • 6Zhang M,Zhou Z.Multilabel neural networks with applications to functional genomics and text categorization.IEEE Transactions on Knowledge and Data Engineering,2006,18(10):1338-1351.
  • 7Zhang M,Zhou Z.A k-nearest neighbor based algorithm for multi-label classification//Proceedings of the IEEE International Conference on Granular Computing.Beijing,China,2005,2:718-721.
  • 8Clare A,King R.Knowledge discovery in multi-label phenotype data//Proceedings of the ECML/KDD.Freiburg,Germany,2001:42-53.
  • 9Tsoumakas G,Dimou A,Spyromitros E,Mezaris V,Kompatsiaris I,Vlahavas I.Correlation-based pruning of stacked binary relevance models for multi-label learning//Proceedings of the ECML/PKDD.Slovenia,2009:101.
  • 10Page L,Brin S,Motwani R,Winograd T.The pagerank citation ranking:Bringing order to the web//Proceedings of the ASIS.Orlando,FL,1998:161-172.

共引文献92

同被引文献95

引证文献12

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部