期刊文献+

基于边界域的条件信息熵和属性约简 被引量:6

Conditional information entropy and attribute reduction based on boundary region
下载PDF
导出
摘要 为了建立边界域条件信息熵与属性约简之间的关系,证明了边界域和整个论域上的条件信息熵相等,得到信息熵约简的边界域条件信息熵表示。利用严凸函数和Jensen不等式,讨论了边界域条件信息熵的若干性质,给出保持边界域条件信息熵不变的充要条件。为了得到正域约简的边界域条件信息熵表示,给出了保持正域不变的边界域条件信息熵充要条件,从而得到正域约简的边界域条件熵判定方法,它是一致决策表正域约简判定方法的推广形式。最后设计一个数值算例阐述如何应用边界域条件信息熵计算正域约简和信息熵约简。 To establish the relationship between conditional information entropy defined on boundary region and attribute reduction, it was proved that the conditional information entropy defined on discourse of universe was the same as the one on boundary region. It means that the representation of information entropy reduction can be obtained by conditional information entropy defined on boundary region. By strictly convex function and Jensen inequality, its properties were discussed. To remain conditional information entropy defined on boundary region unchanged, the sufficient and necessary condition was presented. To get the representation of positive region reduction by conditional information entropy defined on boundary region, its sufficient and necessary condition was given, so as to get the judgment approach for positive region reduction from the view of conditional information entropy on boundary region. It is the generalization of similar method for consistent decision information system. Finally, a numerical example was designed to show how to use the conditional information entropy defined on boundary region to compute the positive region or conditional information entropy reductions.
作者 黄国顺 文翰
出处 《计算机应用》 CSCD 北大核心 2015年第10期2771-2776,共6页 journal of Computer Applications
基金 广东省普通高校特色创新类项目(2014KTSCX152)
关键词 边界域 条件信息熵 正域 正域约简 信息熵约简 boundary region conditional information entropy positive region positive region reduction information entropy reduction
  • 相关文献

参考文献7

二级参考文献81

  • 1LIANG Ji-ye, QU Kai-she Department of Computer Science, Shanxi University, Taiyuan 030006, China.Information Measures of Roughness of Knowledge and Rough Sets for Incomplete Information Systems[J].Journal of Systems Science and Systems Engineering,2001,13(4):418-424. 被引量:9
  • 2Yang Yan Jing Zhanrong Gao Tan Wang Huilong.Multi-sources information fusion algorithm in airborne detection systems[J].Journal of Systems Engineering and Electronics,2007,18(1):171-176. 被引量:18
  • 3程玉胜,张佑生,胡学钢.基于边界域的知识粗糙熵与粗集粗糙熵[J].系统仿真学报,2007,19(9):2008-2011. 被引量:16
  • 4王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 5Pawlak Z. Rough Sets: Theoretical Aspects of reasoning about data[M]. Boston: Kluwer Academic Publishers, 1991.
  • 6Wierman M J. Measuring uncertainty in rough set theory[J]. International Journal of General Systems, 1999, 28(4):283-297.
  • 7Shannon C E. A mathematical theory of communication [J]. The Bell System Technical Journal, 1948,27 (7) : 373-423, 623-656.
  • 8WANG G Y. Algebra view and information view of rough set theory[C]//Proceeding of SPIE, 2001, 4384: 200-207.
  • 9Liang J Y, Dang C Y, Chin K S, et al. A new method for measuring of rough sets and rough relational databases[J ]. Information Sciences, 2002,31 (4) : 331-342.
  • 10de Kleer J, Brown J S. A qualitative physics based on confluences[J]. Artificial Intelligence, 1984, 24(1-3) : 7-83.

共引文献723

同被引文献48

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部