期刊文献+

不完全鲁棒主成分分析的正则化方法及其在背景建模中的应用 被引量:3

Regularized approach for incomplete robust principal component analysis and its applications in background modeling
下载PDF
导出
摘要 针对现有的鲁棒主成分分析(RPCA)方法忽略序列数据的连续性及不完整性的情况,提出了一种低秩矩阵恢复模型——正则化不完全鲁棒主成分分析(RIRPCA)。首先基于序列数据连续性的度量函数建立了RIRPCA模型,即最小化矩阵核范数、L1范数和正则项的加权组合;然后使用增广拉格朗日乘子法来求解所提出的凸优化模型,此算法具有良好的可扩展性和较低的计算复杂度;最后,将RIRPCA应用到视频背景建模中。实验结果表明,RIRPCA比矩阵补全和不完全RPCA等方法在恢复丢失元素和分离前景上具有优越性。 Because the existing Robust Principal Component Analysis (RPCA) approaches do not consider the continuity and the incompletion of sequential data, one type of low-rank matrix recovery model, named Regularized Incomplete RPCA (RIRPCA), was proposed. First, the model of RIRPCA was constructed based on a metric function for evaluating the continuity, where the model minimized a weighted combination of the matrix nuclear norm, L1 norm and regularized term. Then, the augmented Lagrange multipliers algorithm was employed to solve the proposed convex optimization problem. This algorithm has good scalability and low computation complexity, Finally, RIRPCA was applied to the background modeling of videos. The experimental results demonstrate that the proposed method has the superiority of recovering missing entries and separating foreground over matrix completion and incomplete RPCA.
出处 《计算机应用》 CSCD 北大核心 2015年第10期2824-2827,2832,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61403298 11401457) 陕西省自然科学基础研究计划项目(2014JQ8323 2014JQ1019) 陕西省教育厅专项科研计划项目(2013JK0587)
关键词 鲁棒主成分分析 低秩矩阵恢复 背景建模 核范数最小化 增广拉格朗日乘子法 Robust Principal Component Analysis (RPCA) low-rank matrix recovery background modeling nuclear norm minimization augmented Lagrange multiplier
  • 相关文献

参考文献14

  • 1JOLLIFFE I T. Principal c, omponent analysis [ M]. 2nd ed. Berlin: Springer, 2002.
  • 2史加荣,郑秀云,魏宗田,杨威.低秩矩阵恢复算法综述[J].计算机应用研究,2013,30(6):1601-1605. 被引量:73
  • 3史加荣,郑秀云,周水生.矩阵补全算法研究进展[J].计算机科学,2014,41(4):13-20. 被引量:14
  • 4WRIGHT J, GANESH A, RAO S, et al. Robust principal compo- nent analysis: exact recovery of corrupted low-rank matrices via con- vex optimization [ C]// Proceedings of the 2009 Neural Information Processing Systems. Britisb Columbia: [ s. n. ], 2009:2080 - 2088.
  • 5CANDIS E J, LI X, MA Y, et al. Robust principal component a- nalysis?[J]. Journal of the ACM, 2011,58(3) : Article No. 11.
  • 6CANDIS E J, RECHT B. Exact matrix completion via convex opti- mization [ J]. Foundations of Computational Mathematics, 2009, 9 (6) : 717 -772.
  • 7CANDIS E J, TAO T. The power of convex relaxation: near-opti- mal matrix completion[ J]. IEEE Transactions on Information Theo- ry, 2010, 56(5) : 2053 -2080.
  • 8SHI J, ZHENG X, YONG L. Incomplete robust principal compo- nent analysis[ J]. ICIC Express Letters, Part B: Applications, 2014, 5(6) : 1531 - 1538.
  • 9SHANG F, LIU Y, CHENG J, et al. Robust principal component analysis with missing data[ C]//Proceedings of the 23rd ACM Inter- national Conference on Information and Knowledge Management. New York: ACM Press, 2014.
  • 10LIN Z, CHEN M, WU L, et al. The augmented Lagrange muhipli-er method for exact recovery of corrupted low-rank matrices, UILU- ENG-09-2215[ R]. Illinois: University of Illinois at Urbana-Cham- paign, 2009.

二级参考文献91

  • 1JIANG Xu-dong. Linear subspace learning-based dimensionality reduction [ J ]. I EEE Signal Processing Magazine,2011,28 ( 2 ) : 16- 26.
  • 2DONOHO D L. Compressed sensing[ J]. IEEE Trans on Information Theory,2006,52 (4) : 1289-1306.
  • 3CANDES E J, MICHAEL W. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine,2008,25(2) :21-30.
  • 4WRIGHT J, ALLEN Y, GANESH A, et al. Robust face recognition via sparse representation[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence ,2009,31 ( 2 ) :210-227.
  • 5WRIGHT J, MA Yi, MAIRAL J, et al. Sparse representation for computer vision and pattern recognition [ J ]. Proceedings of the IEEE,2010, 98(6) :1031-1044.
  • 6WRIGHT J, GANESH A, RAO S, et al. Robust principal component analysis : exact recovery of corrupted low-rank matrices via convex optimization [ C ]//Proc of the 24th Annual Conference on Neural Information Processing Systems. 2009 : 2080-2088.
  • 7CANDES E J, LI Xiao-dong, MA Yi, et al. Robust principal component analysis? [J]. dournal of the AOM,2011,58(3) :1-37.
  • 8XU Huan, CARAMANIS C, SANGHAVI S. Robust PCA via outlier pursuit [ J]. IEEE Trans on Information Theory, 2012,58 ( 5 ) : 3047- 3064.
  • 9CANDES E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics,2009,9 (6) :717-772.
  • 10CANDES E J, TAO T. The power of convex relaxation : Near-optimal matrix completion[ J]. IEEE Trans on Information Theory,2010, 56 ( 5 ) :2053- 2080.

共引文献88

同被引文献73

  • 1Bouwmans T, Zahzah E H. Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveil- lance[ J]. Computer Vision and Image Understanding, 2014, 122: 22-34.
  • 2Sobral A, Vacavant A. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos [ J]. Computer Vision and Image Understanding, 2014, 122 : 4-21.
  • 3Yilmaz A, Javed O, Shah M. Object tracking: a survey[J]. ACM Computing Surveys (CSUR), 2006, 38(4) : #13.
  • 4Poppe R. A survey on vision-based human action recognition [J]. Image and Vision Computing, 2010, 28(6): 976-990.
  • 5Loke K S, Egerton S. Scene understanding: a framework for im- age segmentation via object recognition [ C ]//Proceedings of the 2010 Sixth International Conference on Intelligent Environments. Kuala Lumpur: IEEE, 2010: 328-331.
  • 6SuganyaDevi K, Malmurugan N, Sivakumar R. OF-SMED : an optimal foreground detection method in surveillance system for traffic monitoring [ C ]//Proceedings of 2012 International Confer- ence on Cyber Security, Cyber Warfare and Digital Forensic ( Cy- berSec). Kuala Lumpur: IEEE, 2012: 12-17.
  • 7Shimada A, Arita D, Taniguchi R mixture-of-Gaussians background IEEE International Conference on veillance. Sydney: IEEE, 2006 : I. Dynamic control of adaptive model [ C ]//Proceedings of Video and Signal Based Sur- 5.
  • 8Barnich O, Van Droogenbroeck M. Vibe : a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724.
  • 9Hofmann M, Tiefenbacher P, Rigoll G. Background segmenta- tion with feedback : The pixel-based adaptive segmenter [ C ]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, RI: IEEE, 2012: 38-43.
  • 10Wright J, Peng Y G, Ma Y, et al. Robust principal component analysis : exact recovery of corrupted low-rank matrices by convex optimization[ C ]//Proceedings of Neural Information Processing Systems. Whistler: MIT Press, 2009.

引证文献3

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部