期刊文献+

基于动态主题情感混合模型的微博主题情感演化分析方法 被引量:12

Evolution analysis method of microblog topic-sentiment based on dynamic topic sentiment combining model
下载PDF
导出
摘要 针对现有模型无法进行微博主题情感演化分析的问题,提出一种基于主题情感混合模型(TSCM)和情感周期性理论的主题情感演化模型——动态主题情感混合模型(DTSCM)。DTSCM通过捕获不同时间片中微博消息集的主题和情感,追踪不同时间片内主题与情感的变化趋势,获得主题情感演化图,从而实现主题和情感的演化分析。真实微博数据集上的实验结果表明,与当前优秀代表算法JST(Joint Sentiment/Topic)、S-LDA(Sentiment-Latent Dirichlet Allocation)和DPLDA(Dependency Phrases-Latent Dirichlet Allocation)相比,该方法的情感分类准确率分别提高了3.01%、4.33%和8.75%,并且可以获得主题情感演化图。这表明该方法具有更高的情感分类准确率并且可以进行微博主题情感演化分析,为舆情分析等应用提供了较好的帮助。 For the problem of existing models' disability to analyze topic-sentiment evolution of microblogs, a Dynamic Topic Sentiment Combining Model (DTSCM) was proposed based on Topic Sentiment Combining Model (TSCM) and the emotional cycle theory. DTSCM could track the topic sentiment evolution trend and obtain the graph of topic sentiment evolution so as to analyze the evolution of topic and sentiment by capturing the topic and sentiment of microblogs in different time. The experimental results in real microblog corpus showed that, in contrast with state-of-the-art models Joint Sentiment/ Topic (JST), Sentiment-Latent Dirichlet Allocation (S-LDA) and Dependency Phrases-Latent Dirichlet Allocation ( DPLDA), the sentiment classification accuracy of DTSCM increased by 3.01%, 4.33% and 8.75% respectively, and DTSCM could obtain topic-sentiment evolution of microblogs. The proposed approach can not only achieve higher sentiment classification accuracy but also analyze topic-sentiment evolution of microblog, and it is helpful for public opinion analysis.
出处 《计算机应用》 CSCD 北大核心 2015年第10期2905-2910,共6页 journal of Computer Applications
基金 教育部人文社会科学研究青年基金资助项目(12YJCZH074) 福建省教育厅A类项目(JA13077)
关键词 主题情感演化 情感挖掘 微博 潜在狄利克雷分配 情感周期性 topic-sentiment evolution sentiment mining microblog Latent Dirichlet Allocation (LDA) emotional cycle
  • 相关文献

参考文献12

  • 1LIN C, HE Y. Joint sentiment/topic model for sentiment analysis [ C] // Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2009:375 -384.
  • 2LI F, HUANG M, ZHU X. Sentiment analysis with global topics and local dependency [ C]// Proceedings of the 24th AAAI Confer- enee on Artificial Intelligence. Menlo Park: AAAI Press, 2010: 1371 - 1376.
  • 3JO Y, OH A. Aspect and sentiment unification model for online re- view analysis [ EB/OL]. [ 2015- 01- 02]. http://www, research- gate. net/publication/221520059_Aspect and sentiment_unification _mode|_for_online_review_ana|ysis.
  • 4BLEI D M, LAFFERTY J D. Dynamic topic models [ C]/! Pro- ceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006:113 -120.
  • 5GRIFFITHS T L, STEYVERS M. Finding scientific topics [ J]. Proceedings of the Nationa| Academy of Science of the United States of America, 2004, 101 (S1) : 5228 - 5235.
  • 6ALSUMAIT L, BARBARA D, DOMENICONI C. On-line LDA: a- daptive topic models for mining text streams with applications to topic detection and tracking [ C]// Proceedings of the 2008 8th IEEE In- ternational Conference on Data Mining. Piscataway: IEEE Press, 2008:3 - 12.
  • 7仇德辉.数理情感学[M].长沙:湖南人民出版社.2001.
  • 8BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation [ EB/OL]. [ 2015- 01- 07]. http://citeseerx, ist. psu. edu/view- doc/download?doi = 10,1,1. 110. 4050&rep = repl&type = pdf.
  • 9LIN C, HE Y, EVERSON R, et al. Weakly supervised joint senti- ment-topic detection from text [ J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(6) : 1134 - 1145.
  • 10MOGHADDAM S, ESTER M. ILDA: interdependent LDA model for learning latent aspects and their ratings from online product re- views[ C]//Proceedings of the 34th International ACM SIGIR Con- ference on Research and Development in Information Retrieval. New York: ACM Press, 2011:665 -674.

共引文献14

同被引文献136

引证文献12

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部