期刊文献+

锂离子电池石墨负极微结构数值重建及特征化分析 被引量:6

Numerical Reconstruction and Characterization Analysis of Microstructure of Lithium-ion Battery Graphite Anode
下载PDF
导出
摘要 实际锂离子电池石墨负极由鳞片状石墨层叠而成,具有明显的各向异性。本文基于椭球颗粒的模拟退火法对其进行三维微结构数值重建。重建微结构乃三相(孔或电解液、石墨和固体添加物)复合结构,很好地再现了实际电极各向异性特征。对重构电极进行特征化分析,得到了电极内固/孔相的连通率、比表面积以及孔径分布等信息;发现石墨颗粒尺寸对电极特性有重要的影响:椭球形石墨颗粒尺寸越大,则重建微结构的平均孔径越大,比表面积越小;相对于赤道半径,椭球颗粒的极半径对重建电极特性的影响更为明显。 The real graphite anode of lithium-ion battery is of evident non-isotropic characteristic due to its cascading graphite flakes. An ellipsoid particle-based simulated annealing method is developed to numerically reconstruct the three-dimensional microstructure of graphite anode. The reconstructed anode is a composite of three clearly distinguished phases: pore(or electrolyte), graphite and solid additive, well representing the non-isotropic characteristic of real graphite anode. Characterization analysis of reconstructed electrodes gives information such as the connectivity, the specific surface area of solid or pore phase, and the pore size distribution. The results show that the size of graphite ellipsoids has important effects on the characteristics of electrode: 1) larger size graphite ellipsoids result in larger mean pore size and smaller specific surface area in the reconstructed electrode; 2) changing the polar radius of graphite ellipsoid particles has more pronounced influence on the characteristics of electrode than has changing its equatorial radius.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2015年第9期906-912,共7页 Journal of Inorganic Materials
基金 国家自然科学基金(51206171) 广州市科技计划项目(y409zc1001) 中国科学院"百人计划"项目~~
关键词 锂离子电池 石墨负极 微结构重建 模拟退火法 椭球颗粒 lithium-ion battery graphite anode microstructure reconstruction simulated annealing method ellipsoid particles
  • 相关文献

参考文献4

二级参考文献66

  • 1Jiang, F. M.; Zeng, J. B.; Wu, W.Adv. Mater. Indus. 2011, 12, 2.
  • 2Venkatasailanathan, R.; Paul, W. C. N.; Sumitava, D.; Shriram, S.; Richard, D. B.; Venkat, R. S. J. Electrochem. Soc. 2012, 159 (3), R31.
  • 3Du, W. B.; Gupta, A.; Zhang, X. C.; Sastry, A. M.; Shyy, W. Int. J. Heat Mass Transfer 2010, 53 (17-18), 3552. doi: 10.1016/j. ijheatmasstransfer.2010.04.017.
  • 4Gu, W. B.; Wang, C. Y. J. Electrochem. Soc. 2000, 147 (8), 2910. doi: 10.1149/1.1393625.
  • 5Wang, C. Y.; Gu, W. B.; Liaw, B. Y. J. Electrochem. Soc. 1998, 145 (10), 3407. doi: 10.1149/1.1838820.
  • 6Smith, K.; Wang, C. Y. J. Power Sources 2006, 161,628. doi: 10.1016/j.jpowsour.2006.03.050.
  • 7Fang, W. F.; Kwon, O. J.; Wang, C. Y. lnt. J. EnergyRes. 2010, 34 (2), 107. doi: 10.1002/er.1652.
  • 8Ye, Y. H.; Shi, Y. X.; Cai, N. S.; Lee, J. J.; He, X. M. 3". Power Sources 2012, 199, 227. doi: 10.1016/j.jpowsour.2011.10.027.
  • 9Zhang, X.; Shyy, W.; Sastry, A. M. J. Electrochem. Soc. 2007, 154 (10), A910.
  • 10Zhang, X.; Sastry, A. M.; Shyy, W. J. Electrochem. Soc. 2008, 155 (7), A542.

共引文献11

同被引文献36

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部