摘要
采用Monte-Carlo模拟了多种参数条件下的遗传关联数据,计算多种基因水平的关联分析方法的统计效能.结果显示:主成分Logistic回归分析(累积贡献率为95%)和我们之前发展的基于LD结构和Fisher组合法的新方法(LD-Fisher)在多种参数条件下都具有很高的统计效能,Fisher组合法只有在单个易感SNP的P值较小时或者存在多个P值不太小的易感SNP时表现较好.主成分Logistic回归分析和LD-Fisher可以作为基因水平关联分析的较为理想的分析方法.
Monte-Carlo is adopted to evaluate the power of multiple gene based association tests. With PCA logistic regression (95% cumulative variance) and our previously developed method, the LD-Fisher is found to have the highest power, and performs well under all simulated circumstances. Fisher combination test presents high power only if the P value of the susceptibility SNP takes very small value or there are multiple susceptibility SNPs. In conclusion, PCA logistic regression and LD-Fisher can be used as gene based association tests for complex diseases.
出处
《宁波大学学报(理工版)》
CAS
2015年第4期104-108,共5页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
国家自然科学基金(31000594)
浙江省自然科学基金(Y2100240)
宁波市自然科学基金(2015A610190)
宁波大学学科项目(XKL141060)