期刊文献+

基于ReliefF特征加权和KNN的自然图像分类方法 被引量:2

Classification Method of Feature Weighted for Natural Images Based on Relief F and K-nearest Neighbors
下载PDF
导出
摘要 为了对自然图像有效准确地分类,提出了一种对图像低层特征和KNN分类算法中的近邻样本分别进行加权的分类方法。针对不同类别图像的视觉特征的差异,通过Relief F算法计算训练集中每个类别的特征权值,利用此权值来改进待测图像与训练集中图像的距离度量;按照不同近邻到待测样本的距离远近,为不同近邻赋予权值来改进KNN算法在类别决策上的不足。实验结果表明该方法较传统KNN和特征加权KNN方法,准确性提高且对不同K值具有良好的鲁棒性。 In order to classify the natural images more effectively and accurately, a classification method weigh images feature and the nearest neighbors of KNN is proposed. Since diverse categories images have different visual features, ReliefF is used to obtain the feature weight vector of each category in training set for weighing the distance between test images and training images ; different weights are given for the K-nearest neighbors according to the distance to training images, so that the weakness of traditional KNN at the classification decisions is overcome effectively. Compared with the traditional KNN and feature-weighted KNN, the experimental result shows that this method has more accuracy and strong robustness for the number of the nearest neighbors.
出处 《电视技术》 北大核心 2015年第19期10-13,17,共5页 Video Engineering
基金 陕西省科技厅社会发展科技攻关计划项目(2015K18-05)
关键词 自然图像 Relie[F 特征加权 KNN 距离加权 natural images ReliefF feature-weighed KNN distance-weighed
  • 相关文献

参考文献11

二级参考文献56

  • 1王上飞,薛佳,王煦法.基于内容的情感图像获取模型[J].计算机科学,2004,31(9):186-190. 被引量:6
  • 2孙志杰,许宏丽.一种图像底层视觉特征到高层语义的映射方法[J].计算机应用,2004,24(12):22-24. 被引量:11
  • 3杨立,左春,王裕国.基于语义距离的K-最近邻分类方法[J].软件学报,2005,16(12):2054-2062. 被引量:31
  • 4杨治明,王晓蓉,彭军,陈应祖.BP人工神经网络在图像分割中的应用[J].计算机科学,2007,34(3):234-236. 被引量:46
  • 5Jacobs R A.Increased rates of convergence through learning rate adaptaion[J].Neural Networks, 1998,1(4) :295-307.
  • 6Cover T M and Hart P E. Nearest neighbor pattern classification [J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
  • 7Nasibov E and Kandemir-Cavas C. Efficiency analysis of KNN and minimum distance-based classifiers in enzyme family prediction [J]. Computational Biology and Chemistry, 2009, 33(6): 461-464.
  • 8Zhang Rui, Jagadish H V, Dai Bing Tian, et al.. Optimized algorithms for predictive range and KNN queries on moving objects [J]. Information Systems, 2010, 35(8): 911-932.
  • 9Yao Bin, Li Fei Fei, and Kumar P. K nearest neighbor queries and kNN-joins in large relational databases (almost) for free [C]. IEEE 26th International Conference on Data Engineering (ICDE), Long Beach, CA, Mar. 1-6, 2010: 4-15.
  • 10Toyama J, Kudo M, and Imai H. Probably correct k-nearest neighbor search in high dimensions [J]. Pattern Recognition, 2010, 43(4): 1361-1372.

共引文献182

同被引文献29

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部