期刊文献+

模糊航空图像中的道路自动检测方法 被引量:3

Automatic detection method of roads from fuzzy aerial images
原文传递
导出
摘要 为了在模糊航空图像中精确地检测道路,通过分析图像中道路特性,提出了一种道路自动检测方法。通过多尺度Retinex算法增强模糊图像,用改进的Canny边缘检测算法检测图像中的主要路段,使用交叉熵理论和贝叶斯决策理论自动获取梯度图像中的高低阈值,从而将灰度图像转化为二值图像,并将图像中所有线性目标进行骨架提取。根据线性目标的形状与尺寸参数进行噪声滤除,并根据端点的方向与端点间的距离进行道路间隙缝合,并结合边缘和原始图像信息调节和修正已检测出的道路。将道路自动检测方法与几种常用的图像分割算法进行比较,包括大津阈值分割算法,Canny边缘检测算法与图论最小割算法,并使用道路自动检测方法对模糊图像中的单条道路、交叉道路和多条道路进行检测。检测结果表明:对模糊或光照不均的航空道路图像,Retinex算法增强图像后可以清晰显示主干道路,而常规的图像分割算法无法将主干道提取出来,使用改进的Canny边缘检测算法并附以图像后处理功能较好地提取主干道路。使用道路自动检测方法能够清晰地检测模糊航空图像中单条道路、交叉道路和多条道路,与人工识别的效果接近。 In order to accurately detect the road from fuzzy aerial images, an automatic road detection method was proposed based on the characteristics of roads in images. The fuzzy images were enhanced by using multiple scale Retinex algorithm. The main road segments in images were detected by using improved Canny edge detection algorithm, and the high and low thresholds in gradient images were automatically obtained by using cross-entropy theory and Bayesian iudgment theory, the gray image was transformed into the binary images, and the skeletons of linear target in the image were extracted. The noise was filtered based on the shape and size characteristics in the linear target, the gaps between segments were linked based on the curvature and the distances between segments, and the detected road was adjusted and modified by combing the edge and the original image information. The proposed automatic road detection method was compared with several widely used traditional algorithms, such as Otsu threshold segmentation algorithm, Canny edge detection algorithm, and graph theory based on the minimum segmentation algorithm, a single road, cross roads and several roads in fuzzy images were detected by using the proposed road detection method. Detection result indicates that as for fuzzy or uneven-illumination aerial road images, the trunk roads can be clearly displayed after enhancing images by Retinex algorithm, while the conventional image segmentation algorithm can not do. The trunk road can be well extracted by using the improved Canny edge detection algorithm with image post-processing function. In the detection of single road, cross roads and several roads in the fuzzy aerial images, the target roads can be clearly detected by using the proposed method. The effect of detection method is close to the result of artificial recognition. 20 figs, 21 refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2015年第4期110-117,共8页 Journal of Traffic and Transportation Engineering
基金 陕西省科学技术研究发展计划项目(2013KW03) 中央高校基本科研业务费专项资金项目(2013G2241019)
关键词 图像处理 道路检测 模糊航空图像 多尺度 RETINEX算法 CANNY边缘检测算法 道路形状 image processing road detection fuzzy aerial image multi-scale Retinex algorithm Canny edge detection algorithm road shape
  • 相关文献

参考文献21

  • 1FISCHLER M A, TENENBAUM J M, WOLF H C. Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique[J]. Computer Graphics and Image Processing, 1981, 15(3): 201-223.
  • 2杨俊,王润生.遥感道路的场景感知与分类检测[J].计算机辅助设计与图形学学报,2007,19(3):334-339. 被引量:12
  • 3CORD A, CHAMBON S. Automatic road defect detection by textural pattern recognition based on AdaBoost[J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(4): 244-259.
  • 4RAJESWARI M, GURUMURTHY K S, REDDY L P, et al. Automatic road extraction based on level set normalized cuts and mean shift methods[J]. International Journal of Computer Science Issues, 2011, 8(3): 250-257.
  • 5HILLEL A B, LERNER R, LEVI D, et al. Recent progress in road and lane detection: a survey[J]. Machine Vision and Applications, 2014, 25(3): 727-745.
  • 6üNSALAN C, SIRMACEK B. Road network detection using probabilistic and graph theoretical methods[J]. IEEE Transaction on Geoscience and Remote Sensing, 2012, 50(11): 4441-4453.
  • 7HU Jiu-xiang, RAZDAN A, FEMIANI J C, et al. Road network extraction and intersection detection from aerial images by tracking road footprints[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 4144-4157.
  • 8罗庆洲,尹球,匡定波.光谱与形状特征相结合的道路提取方法研究[J].遥感技术与应用,2007,22(3):339-344. 被引量:40
  • 9SALAH M B, MITICHE A, AYED I B. Multiregion image segmentation by parametric kernel graph cuts[J]. IEEE Transactions on Image Processing, 2011, 20(2): 545-557.
  • 10ZHANG Shao-yang, WANG Wei-xing, LIU Sheng, et al. Image enhancement on fractional differential for road traffic and aerial images under bad weather and complicated situations[J]. Transportation Letters: The International Journal of Transportation Research, 2014, 6(4): 197-205.

二级参考文献43

共引文献142

同被引文献31

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部