期刊文献+

基于异构CMP的改进蚁群优化任务调度策略 被引量:1

Heterogeneous Chip Multi-core Processor task scheduling method based on ant colony algorithm
下载PDF
导出
摘要 为提高异构CMP任务调度执行效率,充分发挥异构CMP的异构性和并行能力,提出一种基于异构CMP的改进蚁群优化任务调度算法——IACOTS。IACOTS算法首先建立任务调度模型、路径选择规则和信息素更新规则,使蚁群算法能够适用于异构CMP任务调度问题。同时通过采用动态信息素更新、相遇并行搜索策略和引入遗传算法中的变异因子对基本的蚁群算法进行优化,克服蚁群算法搜索时间过长和"早熟"现象。通过仿真实验获得的结果表明,IACOTS算法执行效率优于现有的遗传算法,完成相同的任务需要的迭代次数最少,能有效降低程序执行时间,适用于异构CMP等大规模并行环境的任务调度。 In order to improve the efficiency of task scheduling for heterogeneous Chip Multi-core Processor, this paper proposes an improved ant colony optimization algorithm for task scheduling on heterogeneous CMP, called IACOTS, to exploit the power of heterogeneity and parallel capability of heterogeneous CMP. IACOTS algorithm creates a new task scheduling model and path selection rules. The ACO can be applied to discrete heterogeneous CMP task scheduling problem. Meanwhile, it uses dynamic pheromone updating, two ant parallel search strategy, and the variations factor of genetic algorithm, to overcome the ACO to search too long and"premature"convergence phenomenon, improving local search speed and reducing the total program execution time. The results obtained through simulation experiments show that the algorithm has good performance of global optimization, and distributed parallel computer system. The performance is better than existing heterogeneous multiprocessor task scheduling algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2015年第18期47-51,61,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61003036) 中央高校基本科研业务费专项基金(No.HEUCF100606) 黑龙江省博士后科研启动金(No.LBH-Q12134) 省教育厅项目(No.12513054)
关键词 异构多核处理器(CMP) 任务调度 蚁群算法 遗传算法 heterogeneous Chip Multi-core Processor task scheduling ant colony algorithm genetic algorithm
  • 相关文献

参考文献15

  • 1Kumar R,Tullsen D M, Jouppi N P,et al.Heterogeneous chip multiprocessors[J].Computer, 2005,38 ( 11 ) : 32-38.
  • 2Augonnet C, Thibault S, Namyst R, et al.StarPU : a unified platform for task scheduling on heterogeneous multicore architectures[J].Concurrency and Computation: Practice and Experience, 2011,23(2) : 187-198.
  • 3Ullman J D.NP-complete scheduling problems[J].Journal of Computer and System Sciences, 1975.10(3) :384-393.
  • 4Wen Y,Xu H,Yang J.A heuristic-based hybrid genetic- variable neighborhood search algorithm for task schedul- ing in heterogeneous multiprocessor system[J].Information Sciences,2011,181(3) :567-581.
  • 5Bonyadi M, Ebrahimi Moghaddam M.A bipartite genetic algorithm for multi-processor task scheduling[J].Interna- tional Journal of Parallel Programming, 2009, 37 (5) : 462-487.
  • 6Omara F A, Arafa M M.Genetic algorithms for task scheduling problem[J].Journal of Parallel and Distributed Computing, 2010,70( 1 ) : 13-22.
  • 7Ying K C, Lin S W.Multiprocessor task scheduling in mul- tistage hybrid flow-shops: an ant colony system approach[J]. International Journal of Production Research,2006,44(16): 3161-3177.
  • 8Chen H, Cheng A M K, Kuo Y W.Assigning real-time tasks to heterogeneous processors by applying ant colony optimization[J].Journal of Parallel and Distributed Com- puting, 2011,71( 1 ) : 132-142.
  • 9Ferrandi F, Lanzi P L, Pilato C, et al.Ant colony heuristic for mapping and scheduling tasks and communications on heterogeneous embedded systems[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2010,29(6) :911-924.
  • 10李静梅,张博.一种粒子群优化的异构多处理器任务调度算法[J].小型微型计算机系统,2013,34(5):1154-1157. 被引量:5

二级参考文献29

共引文献43

同被引文献7

引证文献1

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部