期刊文献+

基于局部形态和彩色特征的烧结状态识别

Recognition of sintering state based on local shape and color features
下载PDF
导出
摘要 提出了一种基于局部形态和彩色特征的回转窑烧结状态识别方法。使用SIFT描述回转窑图像的局部形态特征,将彩色的回转窑图像的三个分量都转化为八个等级,用局部三维直方图来描述局部的颜色和亮度特征,将两种特征融合得到局部形态和彩色特征。使用词袋(Bag-of-Words)模型表示图像并利用神经网络分类器实现对烧结状态的识别。实验结果表明,基于局部形态和彩色特征的识别方法能够获得较高的识别精度。 A new method based on local shape and color features is presented to recognize the sintering states in rotary kiln. Local shape features are represented by SIFT descriptor and local color and brightness features are described by the local 3-dimensional histogram after the three components of the color rotary kiln image are converted into eight levels,then the two kinds of features obtained are fused into the local shape and color features. The Bag-of-Words model is used to represent the image and then the neural network classifier is applied to recognize the sintering state. Experimental results show that the recognition method that is based on local shape and color features can obtain higher recognition accuracy.
作者 何敏 唐志敏
出处 《计算机工程与应用》 CSCD 北大核心 2015年第18期194-198,共5页 Computer Engineering and Applications
基金 湖南省自然科学基金(No.13JJ3050) 国家自然科学基金(No.61203016 No.61174050) 中央高校基本科研业务费资助
关键词 烧结状态 特征描述 彩色特征 回转窑 sintering state feature description color feature rotary kiln
  • 相关文献

参考文献17

  • 1Zhou X J, Chai T Y.Pattern-based hybrid intelligent con- trol for rotary kiln process[C]//16th IEEE International Conference on Control Applications,2007 : 979-984.
  • 2Jarvensivu M,Saari K,Jamsa Jounela S L.Intelligent con- trol system of an industrial lime kiln process[C]//14th IFAC World Congress,2001 589-606.
  • 3李树涛,王耀南.基于神经网络的回转窑火焰图像分割[J].仪器仪表学报,2001,22(1):10-12. 被引量:16
  • 4Sun Peng,Chai Tianyou,Zhou Xiaojie.Rotary kiln flame image segmentation based on FCM and gabor wavelet based texture coarseness[C]//7th World Congress on Intel- ligent Control and Automation,2008 : 7615-7620.
  • 5Bertucco L, Fichera A, Nunnari G, et al.A cellular neural networks approach to flame image analysis for combus- tion monitoring[C]//CNNA 2000,2000:455-459.
  • 6Li Weitao, Zhou Xiaojie, Chai Tianyou."Bag of visual words" and latent semantic analysis-based burning staterecognition for rotary kiln sintering process[C]//23rd Chi- nese Control and Decision Conferenc,2011 : 377-382.
  • 7何敏,章兢,王炼红,晏敏,陈华.基于信息熵和组合纹理特征的熟料状态检测[J].仪器仪表学报,2011,32(8):1736-1741. 被引量:5
  • 8Loris N, Alessandra L.Heterogeneous bag-of-features for object/scene recognition[J].Applied Soft Computing,2013, 13(4) :2171-2178.
  • 9Li Weitao, Wang Dianhui, Chai Tianyou.Burning state recognition of rotary kiln using ELMs with heteroge- neous features[J].Neurocomputing, 2013,102 : 144-153.
  • 10Lowe D G.Distinctive image features from scale-invari- ant keypoints[J].Intemational Journal of Computer Vision, 2004,60(2) :91-110.

二级参考文献10

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部