期刊文献+

不可压缩流两重稳定有限体积算法应用研究 被引量:1

Two-level stabilized finite volume method for incompressible flow
下载PDF
导出
摘要 通过将局部高斯积分稳定化方法和两重网格算法思想紧密结合,提出了粘性不可压缩流体的两重稳定有限体积算法。将该算法的三种迭代格式进行了效率的分析比较。理论分析和数值实验发现:当粗、细网格尺度比例选择适当时,两重算法与传统算法具有相同精度解的同时,效率大大提高;对不同格式的两重有限体积算法进行比较分析发现:Simple格式计算效率最高,Picard格式次之,Newton格式较低。 In this paper, two-level stabilized finite volume methods are considered which are based on local Gauss integral technique and two-level grid algorithm for the incompressible flow. The error analysis shows that the two-level stabilized finite volume methods provide an approximate solution with the convergence rate of the same order as the usual stabilized finite volume solution solving the incompressible flow problems on a fine grid for a related choice of mesh widths.The performance of three kinds iterative scheme of two-level stabilized methods are compared in efficiency and precision aspects by a series of numerical experiments. It discovers that the simple scheme is better than two others on accuracy and efficiency. There is the poor numerical accuracy for the Newton scheme, but the Picard scheme is more suitable to incompressible flow with low viscosity coefficient.
作者 杨建宏
出处 《计算机工程与应用》 CSCD 北大核心 2015年第18期255-260,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.11371031 No.NCET-11-1041) 陕西省科技新星计划项目(No.2011kjxx12) 宝鸡市科技计划项目(No.15RKX-1-5-10)
关键词 不可压缩流体 有限体积算法 两重稳定方法 NAVIER-STOKES方程 incompressible flow finite volume methods two-level stabilized methods Navier-Stokes equations
  • 相关文献

参考文献25

  • 1Li J, He Y.A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J].Appl Numer Math, 2008, 58: 1503-1514.
  • 2Bochev P B,Dohrmann C R,Gunzburger M D.Stabili- zation of low-order mixed finite elements for the stokes equations[J].SIAM J Numer Anal, 2006,44 : 82-101.
  • 3Temam R.Navier-Stokes equations, theory and numerical analysis[M].3rd ed.Amsterdam: s.n.], 1983.
  • 4Girault V,Raviart P A.Finite element method for Navier- Stokes equations:theory and algorithms[M].Berlin,Heidel- berg : Springer-Verlag, 1987.
  • 5He Y, Wang A, Li Mei.A stabilized finite element method for the stationary Navier-Stokes equations[J].Eng Math, 2005,51(4) :367-380.
  • 6Li J, He Y.A stabilized finite element method based on two local Gauss integral technique for the stationary stokes equations[J].J Comp Appl Math,2008,214 : 58-65.
  • 7Li J, He Y, Chen Z.A new stabilized finite element method for the transient Navier-Stokes equations[J].Comp Meth Appl Mech Eng,2007,197:22-35.
  • 8Li J.Investigations on two kinds of tw0-1evel stabilized finite element methods for the stationary Navier-Stokes equations[J].Appl Math Comput, 2006, 182 : 1470-1481.
  • 9覃燕梅,冯民富,罗鲲,吴开腾.Navier-Stokes方程的局部投影稳定化方法[J].应用数学和力学,2010,31(5):618-630. 被引量:10
  • 10Li J, Shen L, Chen Z.Convergence and stability of a stabilized finite volume method for stationary Navier- Stokes equations[J].BIT Numer Math,2010,50: 823-842.

二级参考文献25

  • 1罗鲲,冯民富,王成.一个精确的免闭锁四边形板元[J].四川大学学报(工程科学版),2006,38(1):44-48. 被引量:1
  • 2Franca L P, Frey S L. Stabilized finite element methods: Ⅱ. The incompressible NavierStokes equations[ J]. Comput Methods Appl Mech Eng, 1992, 99(2/3 ) :209-233.
  • 3Tobiska L, Verfurth R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equation[ J]. SIAM J Numer Anal, 1996, 33( 1 ) : 107-127.
  • 4Li J, He Y N, Chen Z X. Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs[J]. Computing, 2009, 86( 1 ) :37-51,.
  • 5He Y N, Li J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations [J]. Applied Numerical Mathematics, 2008, 58(10) :1503-1514.
  • 6Li J, He Y N, Xu H. A multi-level stabilized finite element method for the stationary NavierStokes equations [ J ]. Comput Methods Appl Mech Eng, 2007, 196 (4/6) :2852-2862.
  • 7Li J, He Y N, Chen Z X. A new stabilized FEM for the transient Navier-Stokes equations[J]. Comput Methods Appl Mech Engng,2007, 197(1/4) :22-35.
  • 8Becker R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J]. Calcolo, 2001, 38(4) :173-199.
  • 9Becker R, Braack M. A two-level stabilization scheme for the Navier-Stokes equations[ C]// Feistauer M, Dolejsi V, Knobloch P, et al. Numerical Mathematics and Advanced Applications,Berlin: Springer-Verlag, 2003, 123-130.
  • 10Braack M, Burman E. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method[J]. SIAM J Numer Anal, 2006, 43(6) :2544-2566.

共引文献10

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部