摘要
唯一分解环I的一个给定元g确定了I的元素间的一个等价关系~:a,b∈I,a^b当且仅当(a;g)=(b;g),从而得到I的一个分类I(g),a所在的类记为[a].得到了如下主要结果:当g≠0时,I(g)={[d1],[d2],…,[dT(g)]},其中T(g)是g的互不相伴的因子个数,d1,d2,…,dT(g)是g的T(g)个互不相伴的元;g∈I,有|I(g)|≤|I/(g)|;I(g)关于乘法[a][b]=[ab]作成以[1]为单位元的交换半群,且除[1]外其余的元都没有逆元.
A given element g of a factorial ring I determines an equivalence relation between the elements of I~:(V)a,b∈I,a~b ,if ( a ; g) = ( b ; g). Hence, a classification of I referred to as I(g) can be obtained, and [ a ] denote the class which a belongs to. In this paper, the following results are gained: If g≠0, then/(g) = { [d1 ], [d2 ],… [dT(g),]} , where T(g) is the number of non -associated factors of g, and d1 ,d2,…,dT(g) are non- associated factors of g; For V g ∈ I , |I(g)| ≤ |I/(g) | exists; Based on the multiplication [ a ] [ b ] = [ab ] I (g) becomes a commutative semi - group, in which [ 1 ] is the unit element, and the other elements do not have inverse elements.
出处
《哈尔滨师范大学自然科学学报》
CAS
2015年第4期5-8,共4页
Natural Science Journal of Harbin Normal University
基金
四川省教育厅自然科学重点项目(11ZA263)
关键词
唯一分解环
模g同因分类
剩余类环
最大公因子
交换半群
Factorial ring
Mod g equi - divisor classification
Residue class ring
Greatest commonfactor
Commutative semi - group