期刊文献+

改进的蛙跳算法在库存匹配中的研究

The Research of Improved Forehead Leapfrog Algorithm in Inventory Matching
下载PDF
导出
摘要 针对生产订单库存匹配问题,提出一种改进的混洗蛙跳算法(SFLA)进行求解.采用随机分组策略,平衡各子群的寻优能力,保持种群多样性;打破最差蛙只向最优蛙学习的模式,引入Minkowski距离,使最差蛙借助更多同伴信息选择进化方向,增强种群适应性;针对最优蛙进化机会少,引入精英策略和变异思想更新其位置,避免陷入局部极小,加快收敛速度.仿真实验表明所建立模型的正确性和改进后算法的有效性. According to the strategy, an improved forehead 1 problem of production orders inventory matching, by using random grouping eapfrog algorithm is put forward, which can balance the optimization of each subgroup and maintain the diversity of the population. Through breaking the mode and introducing Minkowski distance, the poor frog can only learn from the good frog, and select the evolutionary direction by learning from more companions and enhance the adaptability of the population. In order to solve the problem that the good frog has fewer opportunities to evolve, the elite strategy and variation ideas are introduced to update their locations, which can avoid falling into the local minimum and speed up the convergence. The simulation experiments showed the correctness of the established model and the effectiveness of the improved algorithm.
作者 曾伟渊
出处 《哈尔滨师范大学自然科学学报》 CAS 2015年第4期54-57,共4页 Natural Science Journal of Harbin Normal University
关键词 生产订单 库存匹配 蛙跳算法 Minkowski距离 Production orders Inventory matching Leapfrog algorithm Minkowski distance
  • 相关文献

参考文献8

  • 1Rajagopalan S. Make to order or make to stock: Model and application [ J ]. Management Science, 2002, 48 (2) : 241 - 256.
  • 2Tnunbo M, Kalagnanam J, Lee H. IBM Research Report: A Solution Architecture for Inventory Application Problems inthe Steel Industry. Unpublished Results, 1998.
  • 3Pisinger D. An Exact Algorithm for Large Multiple Knapsack Problems. European Journal of Operational Research, 1999, 114(3): 528 -541.
  • 4blartello S, Toth P. Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester U K, 1990.
  • 5Pan Q K, Wang L, Gao L, et al. An effective shuffled fro- gleaping algorithm for lot - streaming flow shop scheduling problem [ J]. Int J of Advanced Manufacturing Technology, 2011,52(5/6/7/8) :699 -713.
  • 6Rahimi- Vahed A, Mirzaei AH. A hybrid multi -objective shuffled frog - leaping algorithm for a mixed - model assembly line sequencing problem. Computers and Industrial Engineer- ing, 2007, 53(4):642 - 66.
  • 7王介生,高宪文.基于改进混合蛙跳算法的电渣重熔过程多变量PID控制器设计[J].控制与决策,2011,26(11):1731-1734. 被引量:14
  • 8Huynh T H. A modified shuffled frog leaping algorithm for optimal tuning of multivariable PID controllers [ C ]. IEEE Int Conf on Industrial Technology. Perth : [EEE Press, 2008.1- 6.

二级参考文献8

  • 1任伟,郑险峰,姜立新,胡杰,印云志.电渣炉电极调节系统的模糊自适应PID控制[J].冶金自动化,2006,30(1):15-18. 被引量:15
  • 2Chanchal D, Rajani K M. An improved auto-tuning scheme for PID controllers[J]. ISA Transactions, 2009, 48(4): 396- 409.
  • 3Cheng C H, Cheng P G, Xie M J. Current sharing of paralleled DC-DC converters using GA-based PID controllers[J]. Expert Systems with Applications, 2010, 37(1): 733-740.
  • 4Chan W D, Shih S P. PID controller design of nonlinear systems using an improved particle swarm optimization approach[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(11): 3632-3639.
  • 5Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. J of Water Resources Planning and Management, 2003, 129(3): 210-225.
  • 6Huynh T H. A modified shuffled frog leaping algorithm for optimal tuning of multivariable PID controllers[C]. IEEE Int Conf on Industrial Technology. Perth: IEEE Press, 2008: 1-6.
  • 7赵丽丽,宋锦春,刘喜海,柳洪义.基于遗传算法的电渣重熔过程智能控制研究[J].机械与电子,2008,26(5):16-19. 被引量:5
  • 8朱光宇.模因内三角概率选择混合蛙跳算法[J].计算机集成制造系统,2009,15(10):1979-1985. 被引量:15

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部