期刊文献+

带参数的二阶时滞微分方程的边值问题 被引量:1

Boundary Value Problems for Second Order Delay Differential Equations with Parameter
下载PDF
导出
摘要 通过构造一个新的锥,利用锥拉伸与锥压缩不动点定理证明了带参数的二阶时滞微分方程解的存在性. In this paper, a new cone is constructed and the existence of solutions for second order delay differential equations with parameter is proved by using Krasnoselskii fixed -point theorem.
作者 蹇玲玲
出处 《哈尔滨师范大学自然科学学报》 CAS 2015年第5期11-15,共5页 Natural Science Journal of Harbin Normal University
基金 山东省科技项目(J152I57)
关键词 带参数的二阶时滞微分方程 边值问题 不动点 Second Order Delay Differential Equations with Parameter Boundary Value Problems Cone Fixed point
  • 相关文献

参考文献7

  • 1Jankowski T. Monotone Iterations for First Order Differential Equations with a Parameter [ J ]. Acta Math, 1999,84 : 65 - 80.
  • 2Brown R F. Topological Identification of Multiple Solutions to Parameterized Nonlinear Equations [ J ]. Pacific J Math, 1988,131:51 -69.
  • 3Feckan M. Parametrized Singular Boundary Value Problem [ J ]. J Math Anal Appl, 1994,185:417 - 425.
  • 4张凤琴,马知恩,燕居让.一阶带参数的时滞微分方程的边值问题[J].应用数学学报,2003,26(3):525-532. 被引量:2
  • 5Ding Yongbai, Yuan Tongxu. Existence of positive solutions for boundary - value problems of second - order delay differential equations[ J]. Applied Mathematics Letters, 2005,18 : 621 - 630.
  • 6Guo D, Lakshmikantham V. Nonlinear Problems in Abstract Cones, Academic Press, New York, 1988.
  • 7Henderson J, Wang H Y. Positive solutions for nonlinear ei- genvalue problems [ J ]. J Math Anal Appl, 1997,208 : 252 - 259.

二级参考文献10

  • 1Feckan M. Parametrized Singular Boundary Value Problem. J Math. Anal. Appl., 1994, 188:417-425.
  • 2Jankowski T, Lakshmikantham V. Monotone Iterations for Differential Equations with a Parameter.J Appl. Math. Stoch. Anal., 1997, 10:273-278.
  • 3Jankowski T. Monotone Iterations for First Order Differential Equations with a Parameter. Acta Math. Hungar., 1999, 84:65-80.
  • 4Brown R F. Topological Identification of Multiple Solutions to Parametrized Nonlinear Equations.Pacific J. Math. 1988, 131:51-69.
  • 5Stank S. On a Class of Functional Boundary Value Problems for the Equation x″=f(t,x,x′,x",λ).Ann. Pol. Math., 1994, 59:225-237.
  • 6Zhang F, Ma Z, Yan J. Periodic Boundary Value Problems and Monotone Iterative Methods for First Order Impulsive Differential Equations with Delay. Indian J. Pure and Applied Math., 2001, 32:1695-1707.
  • 7Xu H, Liz E. Boundary Value Problems for Functional Differential Equations. Nonlinear Analysis,2000, 41:971-988.
  • 8Ladde G S, Lakshmikantham V, Vatsala A S. Monotone Iterative Techniques for Nonlinear Differential Equations. Boston: Pitman, 1985.
  • 9Leela S, Oguztoreli M N. Periodic Boundary Value Problem for Differential Equations with Delay and Monotone Iterative Method. J Math. Anal. Appl., 1987, 122:301-307.
  • 10Nieto J J, Yu J, Yan J. Monotone Iterative Methods for Functional Differential Equations. Nonlinear Anal., 1998, 32:741-747.

共引文献1

同被引文献1

  • 1Bai Dingyong, Xu Yuantong. Existence of positive solutions for boundary - value problems of second - order delay differ- ential equations[J]. Applied Mathematics Letters, 2005,18: 621 - 630.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部