期刊文献+

金属冷压方程的数值分析 被引量:1

Numerical analysis of cold pressure equation of metals
下载PDF
导出
摘要 在金属等温体积模量和冲击波动态压缩实验数据基础上,利用胡-经(HJ)方法计算了57种金属材料在Born-Mayer(BM)模型中冷压参数q和Q,同时提出了在没有足够实测冲击波数据前提下结合零温Thomas-Fermi(TF)模型与低压实验数据计算冷压参数的试探法。组合Faussurier电子热压模型、Cowan离子热压模型和以上方法得到的冷压拟合式,通过对Be、Co和Pb的计算和实验的冲击绝热数据的对比,分析了HJ法与综合优选法得到的q和Q之间的差异。进一步计算了Sr、Ba和Sm材料沿冲击绝热曲线上的热力学量,通过与相应的实测结果以及与其他模型对比来评估HJ冷压方程的精度。 The cold pressure parameters ofq andQ in the Born-Mayer(BM) model for fifty-seven metals equations were calculated by using the Hu-Jing(HJ) method based on isothermal bulk moduli of metal and measured data in shock wave experiments, and at the same time a trial method for computing them by combining Thomas-Fermi model at absolute zero-temperature with low pressure experiment data, is put forward for lack of the sufficient shock wave experiment data. By integrating the Faussurier model for electron thermal pressure, the Cowan model for ion thermal pressure and the above obtained cold pressure fitted formula, the Hugoniot curves of Be, Co and Pb are calculated and compared with experimental data, and then the discrepancies ofq value andQ value obtained by HJ method and a comprehensive method are analyzed and interpreted. Furthermore, the precision for the cold pressure equation by HJ method is assessed by comparing the thermodynamic quantities on the Hugoniot curves of Sr, Ba, and Sm with the corresponding measured results and the calculated ones by other models.
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2015年第3期198-203,共6页 Nuclear Fusion and Plasma Physics
基金 国家自然科学基金(51237006)
关键词 状态方程 冲击波 胡-经关系式 FCZH模型 Equation of state Shock waves HJ relation FCZH model
  • 相关文献

参考文献21

  • 1Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z-pinches [J]. Rev. Mod. Phys., 2006, 78: 755-807.
  • 2Matzen M, Sweeney M A, Adams R G, et al. Pulsed- power-driven high energy density physics and inertial confinement fusion research [J]. Phys. Plasmas, 2005, 12: 055503.
  • 3Moses E I, Boyd N, Remington B A, et al. The national ignition facility: ushering in a new age for high energy density science [J]. Phys. Plasmas, 2009, 16: 041006.
  • 4Glenzer S H, Redmer R. X-ray Thomson scattering in high energy density plasmas [J]. Rev. Mod. Phys., 2009, 81: 1625-1663.
  • 5Feynman R P, Metropolis N, Teller E. Equations of state of elements based on the generalized Fermi-Thomas theory [J]. Phys. Rev., 1949, 75(10): 1561-1573.
  • 6Rozsnyai B F. Relativistic hartree-fock-stater calculations for arbitrary temperature and matter density [J]. Phys. Rev. A, t972, 5: 1137-1149.
  • 7More R M, Warren K H, Young D A, et al. A new quotidian equation of state (QEOS) for hot dense matter [J]. Phys. Fluids, 1988, 31(10): 3059-3078.
  • 8Perrot F, Dharma-wardana M W C. Equation of state and transport properties of an interacting multi-species plasma: application to a multiply ionized A1 plasma [J]. Phys. Rev. E, 1995, 52(5): 5352-5367.
  • 9Liberman D A. Self-consistent-field for condensed matter [J]. Phys. Rev. B, 1979, 20(12): 4981--4989.
  • 10Pain J C. Shell-structure effects on high-pressure Ranking-Hugoniot shock adiabats [J]. High Energy Density Physics. 2007. 3:204-210.

二级参考文献27

共引文献29

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部