期刊文献+

聚变堆高热流部件超汽化换热实验研究 被引量:1

Experimental study of heat transfer with hyper-vapotron for high heat flux components
下载PDF
导出
摘要 搭建了常压水超汽化实验回路(HVL-Ⅰ),采用平面激光诱导荧光(PLIF)、高速摄影、微距摄影、粒子成像测速(PIV)等先进测量技术,开展聚变堆面对等离子体部件(第一壁、偏滤器)在高热流过冷沸腾工况下强化换热特性实验研究.选择三角形和矩形翅片的铬锆铜超汽化样件,实验工况为常压室温(296K),若丹明 B 水溶液流速0.3~0.5m.s-1连续可调,热流密度~5MW.m-2.实验结果表明同等工况下,矩形翅片比三角形翅片换热效果显著增强,性能提升约30%~50%.微距摄影显示翅根涡流形态保持时间越短,越有利于小汽泡充分扩散,从而使换热得到强化. An experimental study of heat transfer was carried out in the hyper-vapotron loop-Ⅰ(HVL-Ⅰ) test facility. Phenomena of subcooling were observed using the techniques of planar laser induced fluorescent (PLIF), high speed photography, particle image velocimetry, etc. The flow and condition parameters were as follows: (1) CuCrZr alloy material, (2) triangle and rectangle fin structures, (3) inlet subcooling temperature of 296K, (4) Rhodamine solution flow velocity of 0.3~0.5m.s-1. It was found that the heat transfer coefficient (HTC) of rectangle fin is 1.3~1.5 times higher than the triangle fin under the same tested conditions. Furthermore, the heat transfer efficiency is extraordinary dependent on the maintain time of vortex forming between the fins.
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2015年第3期253-258,共6页 Nuclear Fusion and Plasma Physics
基金 国家磁约束核聚变能发展研究专项(2013GB113000 2013GB113004) 国家自然科学基金(91326101 51076166)
关键词 超汽化样件 激光诱导荧光 粒子示踪 强化换热 Hyper-vapotron structure Planar laser induced fluorescence Particle image velocimetry Heat transfer
  • 相关文献

参考文献11

  • 1Mitteau R, Stangeby P, Lowry C, et al., Heat loads and shape design of the ITER first wall [J]. Fusion Eng. Des., 2010, 85(10-12): 2049-2053.
  • 2Falter H D, Thompson E. Performance of hypervapotron beam stopping elements at JET [J]. Fusion Techn., 1996, 29: 584.
  • 3Bobin-Vastra I, Escourbiac F, Merola M, et al. Activity of the European high heat flux test facility [J]. Fusion Engineering and Design, 2005, 75-791 357-363.
  • 4Escourbiac F, Schlosser J, Merola M, et al. A mature industrial solution for ITER divertor plasma facing components [J]. Fusion Engineering and Design, 2005, 75-79: 387-390.
  • 5Peipei Chen, Ty A Newell, Barclay G Jones. Heat transfer characteristics in subcooled flow boiling with hypervapotron [J]. Annals of Nuclear Energy, 2008, 35: 1159-1166.
  • 6Byong-Jo Yun, Byoung-Uhn Bae, Dong-Jin Euh, et al. Experimental investigation of local two-phase flow parameters of a subcooled boiling flow in an annulus [J]. Nuclear Engineering and Design, 2010, 240: 3956-3966.
  • 7Ezato K, Suzuki S, Sato K, et al. Critical heat flux test on saw-toothed fm duct under one-sided heating conditions [J]. Fusion Engineering and Design, 2015, 6-57: 291- 295.
  • 8李佳,潘良明,陈德奇,张俊琦.窄通道过冷沸腾汽化核心密度及汽泡脱离频率的影响因素[J].工程热物理学报,2011,32(11):1873-1875. 被引量:4
  • 9陈二锋,厉彦忠,王斯民.竖直环管内低压水过冷沸腾数值模拟[J].西安交通大学学报,2008,42(7):855-859. 被引量:12
  • 10康钦兰,宋云涛,黄生洪,王忠伟,戢翔.过冷沸腾数值模拟在EAST第一壁中的应用[J].核聚变与等离子体物理,2011,31(4):310-314. 被引量:2

二级参考文献28

  • 1[1]Elkassabgi Y, Lienhard J H. Influences of Subcooling on Burnout of Horizontal Cylindrical Heaters. ASME J.Heat Transfer, 1988, 110(2): 479-486
  • 2[2]Kutateladze S S. Hydrodynamic Theory of Changes in the Boiling Process Under Free Convection Conditions.Izv. Akad. Nauk. USSR, Otd. Tekh. Nauk., 1951, (4):529-536
  • 3[3]Ivey H J, Morris D J. Critical Heat Flux of Saturation and Subcooled Pool Boiling in Water at Atmospheric Pressure. In: Proc. 3rd Int. Heat Transfer Conf., 1966, III:129-142
  • 4[4]Zuber N, Tribus M, Westwater J W. The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids. International Developments in Heat Transfer, 1963,27(1): 220-236
  • 5[5]Zhao Y H, Masuoka T, Tsuruta T. Unified Theoretical Prediction of Fully Developed Nucleate Boiling and Critical Heat Flux Based on a Dynamic Microlayer model.Int. J. Heat Mass Transfer, 2002, 45(15): 3189-3197
  • 6[6]Zhao Y H, Masuoka T, Tsuruta T. Prediction of Transition Boiling Heat Transfer Based on Partial Dryout Model of Liquid Layers. Trans. JSME, series B, 1996, 62(599):2717-2722 (in Japanese)
  • 7Chen DQ, Pan LM, YUAN DW, et al. Dual Model of Bubble Growth in Vertical Rectangular Narrow Channel [J]. Int Comm in Heat and Mass Transfer, 2010, 37(8): 1004-1007.
  • 8TONG LS, TANG YS. Boiling Heat Transfer and Two-Phase Flow [M]. Tayler & Francis, Washington D C, 1979.
  • 9Griffith P, Wallis JD. The Role of Surface Conditions in Nucleat Boiling[J].Chemical Eng Progr Syrup Ser, 1960, 56(30): 49- 63.
  • 10Qi Yusen, Klausner James F, Mei Ren Wei. Role of Surface Structure in Heterogeneous Nucleation [J]. Int J of Heat and Mass Transfer, 2004, 47(14): 3097-3107.

共引文献16

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部