期刊文献+

液态锂实验装置中水冷效率模拟

Simulation of cooling efficiency in test device of liquid lithium
下载PDF
导出
摘要 应用商业软件CFX计算了液态锂流速、热通量、冷却水的速度和温度对自由流动液态锂在热负荷作用下液态锂温度和水冷效率的影响。结果表明:液态锂温度随液态锂流速的增大而降低。热通量小于2MW·m-2时,水冷能够满足对液态锂温度控制的要求;在更大热通量作用下,水冷却显现出冷却能力不足。增大冷却水流速是降低液态锂温度、提高冷却效率的有效途径;冷却水温度对液态锂温度和冷却效率的影响较小。 Using commercial software CFX, the effect of velocity of liquid lithium, heat flux, velocity and temperature of water on temperature of the free flow liquid lithium and cooling efficiency of water under the action of thermal load was calculated. Results indicate that temperature of liquid lithium will decrease with the increase of velocity of liquid lithium. When heat flux is less than 2MW·m-2, water cooling can meet the requirements of the temperature control of liquid lithium, however, cooling capacity of water is insufficient when heat flux is much higher. Increasing the velocity of cooling water is the effective way to decrease temperature of liquid lithium and improve cooling efficiency. The temperature of water has a little impact on temperature of liquid lithium and cooling efficiency.
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2015年第3期278-283,共6页 Nuclear Fusion and Plasma Physics
基金 国家磁约束核聚变能发展研究专项(2013GB114003) 国家自然科学基金(11275135)
关键词 液态锂 热负荷 水冷效率 CFX Liquid lithium Thermal load Cooling efficiency CFX
  • 相关文献

参考文献11

  • 1Allain J P, Kugel H W, Bell M G; et al. NSTX plasma operation with a liquid lithium divertor [J]. Fusion Engineering and Design, 2012, 87: 1724--1731.
  • 2邓柏权,严建成,黄锦华.自由表面液态锂偏滤器靶板物理过程研究[J].核科学与工程,2000,20(4):373-384. 被引量:6
  • 3Brooks J N. Erosion/redeposition analysis of lithium- based liquid surface divertors [J]. Journal of Nuclear Materials, 2001,290-293:185-190.
  • 4Baldwin M J, Doerner R P, Coma R W, et al. Measurements of erosion mechanisms from solid and liquid materials in PISCES-B [J]. Journal of Nuclear Materials, 2001,290-293:166-172.
  • 5Nieto M, Allain J P, Coventry M D, et al. Studies of liquid-metal erosion and free surface flowing liquid lithium retention of helium at the University of Illinois [J]. Fusion Engineering and Design, 2004, 72:93-110.
  • 6Danilov I V, Kirillov I R, Sidorenkov S I, et al. Liquid lithium self-cooled breeding blanket design for ITER [J]. Fusion Engineering and Design, 1998, 39-40: 669--674.
  • 7Wong C P, Malang S, Sawan M, et al. An overview of dual coolant Pb-17Li breeder first wall and blanket concept development for the US ITER-TBM design [J]. Fusion Engineering and Design, 2006, 81: 461--467.
  • 8Mark Tillack, Dai-Kai Sze, Laila El-Guebaly. Blanket system selection for the ARIES-ST [J]. Fusion Engineering and Design, 2000, 48: 371-378.
  • 9Khripunov B I, Petrov V B, Shapkin V V, et al. Lithium surface operating under steady-state power load [J]. Fusion Engineering and Design, 2003, 65: 449-454.
  • 10Evtikhin V A, Lyublinski I E, Vertkov A V, et al. Lithium divertor concept and results of supporting experiments [J] Plasma Physics and Controlled Fusion, 2002, 44: 955-977.

二级参考文献22

  • 1[5]Honing R E and Kramer D A.Vapor Pressure Data for the Solid and liquid Elements.RCA Rewiew,1969,30:285
  • 2[6]Lyon R L.Liquid Metal Handbook.Sec.Ed.,Washinigton,1955,38-102
  • 3[7]Douglas I B,Epstein L F,Dever J L,et al.J.Am.Chem.Soc.,1955,77(8):2 144
  • 4[8]Hassanein A M.Plasma disruption Modeling and Simulation.Presented at the 11th Topical Meeting on the technology of fusion Energy,ANS, June 19-23,1994
  • 5[9]Hassanein A M.J.Nucl.Mater.1984,122-123:1453
  • 6[10]Mehlhorn T A. A finite material temperature model for ion energy deposition in ion-driven ICF targets,SAND80-0038.1980
  • 7[11]Lindhard J,Scharff M,Schiott H E,et al.Vidensk.Selsk.Mat.Fys.Medd.1963,33(14):125
  • 8[12]Lindhard J,Scharff M.Phys Rev.1964,124:128
  • 9[13]Jackson J D,Classical Electrodynamics,Wiley,1975
  • 10[1]Christofilos N C.J.Fusion Energy.1989,8:97

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部