期刊文献+

开口钢管内甲烷爆炸火焰厚度和压力发展特征 被引量:4

Flame thickness and pressure development characteristics of methane explosion in an open steel pipe
下载PDF
导出
摘要 通过搭建长为20m、截面为0.08m×0.08m的非绝热开口钢管,研究了甲烷与空气预混气体发生爆炸后的火焰和压力发展特征。实验结果表明:火焰信号最强的时刻对应于火焰前锋反应区内某时刻,而火焰信号起始上升时刻与火焰前锋预热区起始时刻接近,应选择某点火焰信号起始上升时刻作为该点的火焰到达时间。随着远离点火源距离的增加,火焰厚度呈现先变薄后变厚的变化趋势,最大超压呈现先减小、后增大、再减小的趋势,火焰传播速度则呈先增大后减小的变化过程。非绝热开口钢管的实验条件对爆炸超压和火焰传播速度的影响较大。研究成果可为甲烷爆炸致灾机制及防控的研究提供参考。 Through establishing a non-adiabatic open pipe with a length of 20 m and a cross-sectional area of 0.08 m ×0.08 m, the flame and pressure development characteristics of premixed methane/air explosion were investi-gated experimentally.The results showed that the time of obtaining maximum flame signal value is corresponding to a certain time of flame-front reaction zone, while the time when the flame signal begins to rise is almost the same as that when the flame-front preheat zone starts.Thus, the time when the flame signal begins to rise at a certain point can be defined as the flame arrival time at this point.With increasing distance away from the ignition source, the flame thickness presents a changing trend of decreasing first and increasing after, and the maximum overpressure follows a trend of decreasing, increasing and decreasing, while the flame propagation speed shows a changing process of increasing and decreasing.The experimental conditions of non-adiabatic open steel pipe have an obvious effect on the explosion overpressure and flame propagation speed.The results can provide a reference for the further research on the disaster mechanism and control of methane explosion.
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2015年第9期5-10,共6页 Journal of Safety Science and Technology
基金 国家自然科学基金项目(51504008) 安徽高校自然科学研究项目(KJ2015A068) 中国博士后科学基金资助项目(2015M571913) 煤炭资源与安全开采国家重点实验室开放课题资助项目(SKLCRSM14KFB07) 安徽理工大学引进人才科研启动基金资助项目(ZY530)
关键词 非绝热条件 开口管道 甲烷爆炸 火焰厚度 non-adiabatic condition open pipe methane explosion flame thickness
  • 相关文献

参考文献13

  • 1Lee J H S, Solohukhin R I, Oppenheim A K. Current views on gaseous detonation [ J ]. Astonautica Acta, 1969, 14:565-584.
  • 2Bjerketvedt D, Bakke J R, van Wingerden K. Gas explo- sion handbook [ J ]. Journal of Hazardous Materials, 1997, 52(1) : 1-150.
  • 3Ciccarelli G, Dorofeev S. Flame acceleration and transi- tion to detonation in ducts [ J ]. Progress in Energy and Combustion Science, 2008, 34(4): 499-550.
  • 4Dorofeev S B. Flame acceleration and explosion safety ap- plications [ J]. Proceedings of the Combustion Institute, 2011, 33(2): 2161-2175.
  • 5林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学报,1999,24(1):56-59. 被引量:93
  • 6林柏泉,周世宁,张仁贵.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报,1999,28(2):104-107. 被引量:105
  • 7Frolov S M, Aksenov V S, Shamshin I O. Reactive shock and detonation propagation in U-bend tubes [J]. Journal of Loss Prevention in the Process Industries, 2007, 20 (4- 6) : 501-508.
  • 8Frolov S M, Aksenov V S, Shamshin I O. Shock wave and detonation propagation through U-bend tubes [ J ]. Proceedings of the Combustion Institute, 2007, 31 ( 2 ) : 2421-2428.
  • 9Frolov S M. Fast deflagration-to-detonation transition [ J]. Russian Journal of Physical Chemistry, 2008, 132: 442-455.
  • 10萨文科,古林,马雷.井下空气冲击波[M].龙维祺,于亚伦,译.北京:冶金工业出版社,1979:92-112.

二级参考文献12

共引文献201

同被引文献29

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部