期刊文献+

一种计量青鳉鱼胸鳍和尾鳍摆动频率和幅值的计算机视觉算法 被引量:8

A Computer Vision Algorithm Which Was Used for Measuring the Oscillation Frequency of the Japanese Medaka's Pectoral Fin and Caudal Fin
下载PDF
导出
摘要 青鳉鱼在饮用水安全领域具有很高的应用价值,其鱼鳍的活动状态可以反映水质的污染状况。但由于技术条件的限制,传统的方法无法实时而有效地提取到这些特征。针对这个问题,提出了一种可以高效识别并测量青鳉鱼胸、尾鳍摆动频率和幅值的计算机视觉算法。其中,为了快速地提取到这2个细节,自动阈值分割、帧差法、背景差分法、重心法、图像卷积和骨架细化等耗时极短的图像处理方法被应用到这项研究当中。初步试验显示这种算法在应用过程中是高效而可行的。它可以被广泛地应用到水环境监测领域,如研究有毒物质对青鳉鱼行为特性的影响和评估水环境的危险程度。 Japanese medaka (Oryzias latipes) has high value of application in the field of drinking water safety. The active state of fins can reflect the pollution status of waters. However, due to the limitation of technical condi- tions, the traditional methods cannot effectively extract these features in real time. To address this issue, this paper proposed an efficient method based on the computer vision to efficiently identify and measure the swing frequency and amplitude of pectoral and tail fins. Several image processing algorithms, such as automatic threshold segmenta- tion, frame difference, background subtraction, gravity method, image convolution and skeleton thinning, were em- ployed in this paper to extract the details quickly. The preliminary results demonstrated that the proposed method is effective and feasible, and can be widely applied to the field of water environment monitoring, such as the research of toxic substances on the behavior characteristic of medaka, and evaluation of the risk levels of the water environ- ment.
出处 《生态毒理学报》 CAS CSCD 北大核心 2015年第4期154-161,共8页 Asian Journal of Ecotoxicology
基金 国家自然科学基金(61071158)
关键词 青鳉鱼 鱼鳍 计算机视觉算法 在线监测 水质预警 medaka fins computer vision online monitoring early warning
  • 相关文献

参考文献15

  • 1Little E E,Archeski R D,Flerov B A,et al.Behavioral indicators of sublethal toxicity in rainbow trout[J].Archives of Environmental Contamination and Toxicology,1990,19(3):380-385.
  • 2ASTM.ASTM E1711-12,Standard Guide for Measurement of Behavior during Fish Toxicity Tests[S].West Conshohocken:ASTM International,2012.
  • 3Israeli-Weinstein D,Kimmel E.Behavioral response of carp(Cyprinus carpio)to ammonia stress[J].Aquaculture,1998,165(1-2):81-93.
  • 4文闻.斑马鱼标志物图像信息获取与处理方法研究[D].北京:北京航空航天大学,2011.
  • 5Heng M,Tsai T F,Liu C C,et al.Real time monitoring of water quality using temporal trajectory of live fish[J].Expert Systems with Applications,2010,37(7):5158-5171.
  • 6陈勇.基于机器视觉的鱼体运动模型研究[D].杭州:浙江工业大学,2010.
  • 7Israeli D,Kimmel E.Monitoring the behavior of hypoxiastressed Carassius acuratus using computer vision[J].Aquacultural Engineering,1996,15(6):423-440.
  • 8Kato S,Nakagawa T,Ohkawa M,et al.A computer image processing system for quantification of zebra fish behavior[J].Journal of Neuroscience Methods,2004,134:1-7.
  • 9Migliore D A,Matteucci M,Naccari M,et al.A Revaluation of Frame Difference in Fast and Robust Motion Detection[C].The Fourth ACM International Workshop on Video Surveillance and Sensor Networks,2006,6:215-218.
  • 10朱明旱,罗大庸.基于帧间差分背景模型的运动物体检测与跟踪[J].计算机测量与控制,2006,14(8):1004-1006. 被引量:34

二级参考文献7

  • 1Chen S C,Shyu M L,Zhang C,et al.Object tracking and augmented transition network for video Indexing and moding[A].12th IEEE International Conference on Tools with Artificial Intelligence (ICTAI2000)[C].Vancouver,2000,428-435.
  • 2Barron J,Fleet D,Beachem in S.Performance of optical flow techniques[J].International Journal of computer Vision 1994,12(1):42-47.
  • 3Meier T,Ngun K N.Video Segmentation for Content-Based Coding[J].IEEE Trans.on Circuits and Systems for Video Technology,1999,9 (8):1190-1203.
  • 4Gupt S,Masound O,Martin RFK,etal.Der ection and classification for vechicles[J].IEEE Transcations on Intelligent Transpor-atationSystems.2002,3 (1):37-47.
  • 5Haritaoglu I,Davis L S,Harwood D.W4 Who? Where? What?A Real Time System for Detecing and Tracking People[A].In FGR98[C].1998.
  • 6Cucchiara R,Grana C,Piccardi M,et al.Improving shadow suppression in moving object detection with HSV color information[A].Proceedings of IEEE IntelligentTransportation Systems conference[C].Oakland,CA,USA,2001:334-339.
  • 7林洪文,涂丹,李国辉.基于统计背景模型的运动目标检测方法[J].计算机工程,2003,29(16):97-99. 被引量:80

共引文献33

同被引文献89

引证文献8

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部