期刊文献+

基于切削铜纤维烧结的大功率LED微型换热器性能研究 被引量:1

Performance of micro heat exchangers for high-power LED based on sintered cutting fibers
原文传递
导出
摘要 针对大功率LED热流密度高的问题,提出一种基于切削铜(Cu)纤维烧结的微型换热器水冷散热系统。实验研究了烧结切削Cu纤维的孔隙率以及复合形式对LED芯片表面温度和换热器进出口压降的影响规律。实验结果表明,对于单一型烧结纤维微型换热器,在入口流量相同的情况下,孔隙率为80%的烧结纤维微型换热器对芯片表面的散热性能最优,而孔隙率为75%的烧结纤维微型换热器压力损失最大;对于复合型烧结纤维微型换热器,在入口流量相同的情况下,复合Ⅲ型(80~85%)烧结纤维微型换热器的散热性能最好,而复合Ⅰ型(75~80%)烧结纤维微型换热器的进出口压降最大。 In this work,a water cooling system based on the micro heat exchanger with sintered cutting copper fibers is put forward to meet the requirements of heat dissipation for the high power LED. The effects of different porosities and different composite forms of sintered cutting copper fibers on the chip's surface temperature and the pressure drop between the import and export of the micro heat exchanger are experimentally investigated. As for the micro heat exchangers with simple sintered cutting copper fi- bers,the results of experiment indicate that the micro heat exchanger with the porosity of 80% presents the best performance of heat dissipation on the chiprs surface temperature, whereas the micro heat ex- changer with the porosity of 75% has the largest pressure loss between the import and export at the same condition of inlet flow rate. As for the micro heat exchangers with composite forms of sintered cut- ring copper fibers, the results of experiment show that the heat exchanger with the composite-porosity of 80 %- 85% has the best heat dissipation performance on the chiprs surface temperature, while the micro heat exchanger with the composite-porosity of 75%- 80% has the largest pressure drop between the import and export at the same condition of inlet flow rate.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第9期1678-1684,共7页 Journal of Optoelectronics·Laser
基金 广东省工业攻关(2012B010500021) 广州市珠江科技新星(2013J2200060)资助项目
关键词 切削纤维 微型换热器 大功率LED 水冷散热 cutting fiber micro heat exchanger high-power LED water cooling
  • 相关文献

参考文献20

  • 1Lu X,Hua T C,Wang Y.Thermal analysis of high power LED package with heat pipe heat sink[J].Microelectronics Journal,2011,42(11):1257-1262.
  • 2Chung C H,Yang K S,Chien K H,et al.Heat Transfer characteristics in high power LED packaging[J].Smart Science,2014,2(1):1-6.
  • 3Sun C C,Moreno I,Chung S H,et al.Brightness management in a dir ect LED backlight for LCD TVs[J].Journal of the society for information disp lay,2008,16(4):519-526.
  • 4肖思, 李林. 大功率LED舞台灯的照明设计[J]. 光学学报, 2011, 31(S1): s100307.
  • 5Lei Z, Xia G, Ting L, et al. Color rendering and luminous efficacy of trichromatic and tetrachromatic LED-based white LEDs[J]. Microelectronics Journal, 2007,38 (1) .. 1- 6.
  • 6Lin M T,Chang C,Horng R H,et al.Heat dissipation performance fo r the application of light emitting diode[C].Design,Test,Integration & Packa ging of MEMS/MOEMS,2009.MEMS/MOEMS′09.Symposium on.IEEE,2009,5-149.
  • 7Zhao D,Tan G.A review of thermoelectric cooling:materials,modeling and applications[J].Applied Thermal Engineering,2014,66(1):15-24.
  • 8Tsai M Y,Chen C H,Kang C S.Thermal measurements and analyses of low-cost high-power LED packages and their modules[J].Microelectronics Reliability,2012,52(5):845-854.
  • 9Yung K C,Liem H,Choy H S,et al.Thermal performance of high brightness LED array package on PCB[J].International Communications in Heat and Mass Transfer, 2010,37(9):1266-1272.
  • 10Bhattacharya A, Mahajan R L.Finned metal foam heat sinks for electronics cooling in forced convection[J].Journal of Electronic Packaging, 2002,124(3):155-163.

二级参考文献31

  • 1周继军,申盛,徐进良,陈勇.微槽道内单相流动阻力与传热特性[J].化工学报,2005,56(10):1849-1855. 被引量:23
  • 2U A Zeigarnik, F P Ivanov, N P Ikranikov. Experimental Data on Heat Transfer and Hydraulic Resistance in Unregulated Porous Structures(in Russian). Teploenergetika, 1991, (2): 33-38.
  • 3G J Hwang, C H Chao. Heat Transfer Measurement and Analysis for Sintered Porous Channels. J of Heat Transfer, 1994, 116:456-464.
  • 4W H Hsieh, S F Lu. Heat Transfer Analysis of Thermally-Developing Region of Annular Porous Media. In: Proc of 11^th Int. Heat Transfer Conference. Kyongju, Korea,1998. 4:447-452.
  • 5Pei Xue Jiang, Zhan Wang, Ren Ze-Pei. Experimental Research of Forced Convection Heat Transfer in Plate Channel Filled with Glass or Metallic Particles. Experimental Thermal and Fluid Science, 1999, 20:45-54.
  • 6Kang S D,博士学位论文,1992年
  • 7Wu P Y,1983年
  • 8Damean N, Regtien P P, Elwenspoek M. Heat Transfer in a MEMS for Microfluidics. Sens Actuators ,A, 2003, 105 (2) : 137 - 149.
  • 9Schneegass I, Kohler J M. Flow - Through Polymerase Chain Reactions in Chip Thermocyclers. Rev Mol Biotechnol, 2001, 82 (2) : 101 - 121.
  • 10Delsman E R, de Croon M H J M, Kramer G J, et al. Experiments and Modelling of an Integrated Preferential Oxidation - Heat Exchanger Microdevice. Chem Eng J, 2004, 101 ( 1 - 3 ) : 123 - 131.

共引文献37

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部