期刊文献+

一种多分类器协同的半监督分类算法SSC_MCC

A Semi-supervised Classification Algorithm SSC_MCC Based on Multiple Classifier Cooperation
下载PDF
导出
摘要 为了提高半监督分类性能,提出了一种多分类器协同的半监督分类算法SSC_MCC.算法采用双层结构集成,使用多条件判断挖掘未标记样本信息,扩充有标记样本.第一层中,采用三分类器协同投票一致策略实现对未标记样本进行标记,第二层中采用基于正确分类率的分类器加权投票决策标记未标记样本,扩充有标记样本,用最终生成的有标记样本训练分类器,实现半监督分类.最后,使用UCI数据集模拟半监督实验,结果表明SSC_MCCL较好地提高了半监督分类性能. In order to improve the performance of semi-supervised learning,a kind of semi-supervised classification algorithm based multiple classifier cooperation(SSC_MCC)was proposed. The algorithm was composed of double layer structure integration,using multi condition judge to dig the unlabeled samples information and expand the labeled samples. In the first layer,collaborative voting strategy using three classifiers was to label the unknown sample. In the second layer,the weighted voting decision strategy based on correct classification rate was used to label the unknown sample and expand the labeled sample,using the generated samples to train the classifier and come true the semi-supervised classification. Finally,experiment was carried out based on the UCI data set. The results showed that SSC_MCC can improve the classification performance of semi-supervised learning.
作者 刘宁 赵建华
出处 《河南科学》 2015年第9期1554-1558,共5页 Henan Science
基金 陕西省自然科学基础研究计划资助项目(2015JM6347) 商洛学院科研项目(14SKY006) 商洛市科技计划项目(SK2014-01-15)
关键词 半监督学习 多分类器协同 分类 双层结构 semi-supervised learning multiple classifier cooperation classification double layer structure
  • 相关文献

参考文献11

  • 1Olivier C, Bernhard S, Alexander Z. Semi-Supervised Leamingl- M]. Cambridge, USA: MIT Press, 2006: 3-10.
  • 2李昆仑,曹铮,曹丽苹,张超,刘明.半监督聚类的若干新进展[J].模式识别与人工智能,2009,22(5):735-742. 被引量:50
  • 3王立宏,赵宪佳,武栓虎.基于EM的启动子序列半监督学习[J].计算机研究与发展,2009,46(11):1942-1948. 被引量:3
  • 4Zhou D, Scholkopf B, Semi-supervised T. Learning on Directed Graphs [J]. Advances in Neural Information Processing System, 2005, 17: 1633-1640.
  • 5Zhou Z H, Li M. Tri-training: Exploiting unlabeled data using three classifiers [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11) : 1529-1541.
  • 6Song Enmin, Huang Dongshan, Ma Guangzhi, et al. Semi-supervised multi-class Adaboost by exploiting unlabeled dataJ]. Expert Systems with Applications, 2011,38: 6720-6726.
  • 7Blum A, Mitchell T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the 1 lth Annual Conference on Computational Learning Theory (COLT'98) , Wisconsin, USA: ACM, 1998: 92-100.
  • 8赵建华,李伟华.一种协同半监督分类算法Co-S3OM[J].计算机应用研究,2013,30(11):3237-3239. 被引量:12
  • 9于重重,商利利,谭励,涂序彦,杨扬,王竞燕.一种增强差异性的半监督协同分类算法[J].电子学报,2013,41(1):35-41. 被引量:9
  • 10周志华.基于分歧的半监督学习[J].自动化学报,2013,39(11):1871-1878. 被引量:87

二级参考文献121

  • 1Olivier C, Bernhard S, Alexander Z. Semi-Supervised Learning. Cambridge, USA : MIT Press, 2006 : 3 - 10.
  • 2Blum A, Mitchell T. Combining Labeled and Unlabeled Data with Co-Training//Proe of the 11th Annual Conference on Computational Learning Theory. Madison, USA, 1998 : 92 - 100.
  • 3Zhong Shi. Semi-Supervised Model-Based Document Clustering: A Comparative Study. Machine Learning, 2006, 65 ( 1 ) : 3 - 29.
  • 4Wagstaff K, Cardie C, Rogers S, et al. Constrained K-means Clustering with Background Knowledge // Proc of 18th International Conference on Machine Learning. San Francisco, USA, 2001:577 -584.
  • 5Wagstaff K, Cardie C. Clustering with Instance-Level Constraints// Proc of the 17th International Conference on Machine Learning. SanFrancisco, USA, 2000:1103 - 1110.
  • 6Huang Desheng, Pan Wei. Incorporating Biological Knowledge into Distance-Based Clustering Analysis of Micro Array Gene Expression Data. Bioinformatics, 2006, 22 (10) : 1259 - 1268.
  • 7Tari L, Baral C, Kim S. Fuzzy C-Means Clustering with Prior Biological Knowledge. Journal of Biomedical Informatics, 2009, 42 (1): 74-81.
  • 8Ceccarelli M, Maratea A. Improving Fuzzy Clustering of Biological Data by Metric Learning with Side Information. International Journal of Approximate Reasoning, 2008, 47 ( 1 ) : 45 - 57.
  • 9Huang Ruizhang, Lam W. An Active Learning Framework for Semi Supervised Document Clustering with Language Modeling. Data & Knowledge Engineering, 2008, 68 ( 1 ) : 49 - 67.
  • 10Erman J, Mahanti A, Arlitt M, et al. Offline/Realtime Traffic Classification Using Semi-Supervised Learning. Performance Evaluation, 2007, 64(9/10/11/12): 1194- 1213.

共引文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部