期刊文献+

超超临界1000MW汽轮机双流调节级气动性能研究

Investigation on Aerodynamic Performance of Double-flow Controlling Stages for Ultra-supercritical 1000 MW Turbine
下载PDF
导出
摘要 文章采用CFD数值分析软件完成了超超临界1 000 MW汽轮机双流调节级气动性能分析,分析对象包括双流进汽腔室、双流调节级整圈、外部回流腔室、出口混流腔室全真几何模型;分析结果表明在三阀、四阀工况下,该调节级进汽腔室结构压损小,调节级气动性能优良,能达到热力设计目标。 In this paper, aerodynamic performance of double-flow controlling stages for ultra-supercritical 1 000 MW turbine which includes inlet chamber, controlling stages, outsider of the reverse flow chamber and export mixed flow chamber was investigated by using CFD software. The analysis result shows that the loss of total pressure in inlet chamber was lower under operation condition, the high aerodynamic performance of controlling stages could achieve the goal of thermodynamic design.
出处 《东方汽轮机》 2015年第3期9-13,共5页 Dongfang Turbine
关键词 超超临界1 000 MW汽轮机 双流调节级 CFD全周模拟 冻结转子法 非周期性 流动特性 气动性能 ultra-supercritical 1 000 MW turbine double-flow controlling stages full-passage CFD simulation frozen rotor non-periodic flow characteristic aerodynamic performance
  • 相关文献

参考文献1

二级参考文献38

  • 1[1]Harten A.High resolution scheme for hyperbolic system of conservation law[J].J Comp Phys,1983,(49): 357~393.
  • 2[2]Sweby P K.High resolution schemes using flux limiters for hyperbolic conservation laws[J].SIAM J Num Anal,1984,21: 995~1 011.
  • 3[3]Yee H C.Construction of explicit and implicit symmetric TVD scheme and their applications[J].J Comp Phys,1987,(68): 151~179.
  • 4[4]Steger J L,Warming R F.Flux vector splitting of the inviscid gasdynamic equations with application to finite difference methods[J].J Comp Phys,1981,(40): 263~293.
  • 5[5]Chakravarthy S R.The split-coefficient matrix method for hyperbolic system of gas dynamics equations[A].AIAA Paper[C],80-268,1980.
  • 6[6]Roe P L.Approximate Riemann solvers,parameter vectors and different schemes[J].J Comp Phys,1981,(43): 357~372.
  • 7[7]Van Leer B.Towards the ultimate conservative diffe-rence scheme V: A second order sequal to Godunov's method[J].J Comp Phys,1979,(32): 101~136.
  • 8[8]Jameson A,Schmidt W,Turkel E.Numerical solution of the Euler equation by finite volume methods with Runge-Kutta time stepping schemes[A].AIAA Paper [C],81-1259,1981.
  • 9[9]Ni R H.A Multiple grid scheme for solving the Euler equation[J].J AIAA,1982,20: 1 565~1 571.
  • 10[10]Van Leer B,Tai C H,Powell K G.Design of optimally smoothing multistage schemes for the Euler equations[A].AIAA Paper[C],89-1933,1989.

共引文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部