期刊文献+

丙型肝炎病毒NS3-5B转基因小鼠模型的构建

Generation of the Transgenic Mice Model Expressing HCV NS3-5B
下载PDF
导出
摘要 目的:构建表达丙型肝炎病毒(HCV)NS3-5B蛋白的转基因小鼠模型。方法:显微注射线性化p IRES2-EGFP-NS3-5B载体到小鼠受精卵,制备并传代筛选HCV NS3-5B转基因小鼠;通过血清谷丙转氨酶(ALT)、谷草转氨酶(AST)检测和肝脏HE染色,对6周龄转基因小鼠进行肝功能评价。结果:PCR、RT-PCR和Western印迹结果表明HCV NS3-5B转基因小鼠构建成功;6周龄部分转基因小鼠血清ALT和AST值升高,但差别无统计学意义,肝组织形态无改变。结论:构建了HCV NS3-5B转基因小鼠模型,为进一步在体研究HCV复制复合体建立了平台。 Objective: To construct the transgenie mice model expressing HCV NS3-5B protein. Methods: HCV NS3-5B transgenic mice were generated by microinjection of the linearized vector of pIRES2-EGFP-NS3-5B into mice fertilized eggs. Subsequently, homozygous transgenic mice with genetic stability were selected by breeding. Liv- er function of 6 weeks old transgenic mice were evaluated via testing ALT and AST in serum and HE staining of liver. Results: NS3-5B transgenic mice were identified by PCR, RT-PCR and Western blotting. Compared with the same age of wild type C57BL/6, the change of ALT and AST of the transgenic mice were no statistical differ- ence and the shape of liver tissue was unchanged. Conclusion: The transgenic mouse model expressing HCV NS3- 5B was generated successfully. It provides a research platform for HCV replication complex in vivo.
出处 《生物技术通讯》 CAS 2015年第5期627-631,共5页 Letters in Biotechnology
基金 陕西省科技统筹创新工程计划(2014KTCL03-08) 军队后勤计划(CWS13L058)
关键词 丙型肝炎病毒 NS3-5B蛋白 复制复合体 转基因小鼠模型 hepatitis C virus NS3-5B protein replication complex transgenic mice model
  • 相关文献

参考文献17

  • 1Wedemeyer H, Dore G J, Ward J W. Estimates on HCV dis- ease burden wordide-filling the gaps[J]. J ViraJ Hepat, 2015,22(Suppl 1):1-5.
  • 2Hoshida Y, Fuchs B C, Bardeesy N, et al. Pathogenesis aud prevention of hepatitis C virus-induced hepatocellular carcino- ma[J]. J Hepatol, 2014,61(Suppl 1):S79-S90.
  • 3Brass V, Moradpour D, Blum H E. Molecular virology of hep- atitis C virus(HCV): 2006 update[J]. Int J Med Sci. 2006,3(2):29-34.
  • 4SUN Hongnan, MU Taihua, XI Lisha, et al. Sweet potato (lpomoea batatas L.) leaves as nutritional and functional foods[J]. Food Chemistry, 2014, 156(1): 380-389.
  • 5ISHIDA H, SUZUNO H, SUGIYAMA N, et al. Nutritive evaluation on chemical components of leaves, stalks and stems of sweet potatoes (lpomoea batataspoir)[J]. Food Chemistry, 2000, 68(3): 359-367.
  • 6HUANG Xiaoqin, TU Zongcai, XIAO Hui, et al. Dynamic high pressure microfluidization-assisted extraction and antioxidant activities of sweet potato (lpomoea batatas L.) leaves flavonoid[J]. Food and Bioproducts Processing, 2013, 91(1): 1-6.
  • 7SUN Hongnan, MU Taihua, XI Lisha, et al. Effects of domestic cooking methods on polyphenols and antioxidant activity of sweet potato leaves[J]. Journal of Agricultural and Food Chemistry, 2014, 62(36): 8982-8989.
  • 8BOULEKBACHE-MAKHLOUF L, MEDOUNI L, MEDOUNI- ADRAR S, et al. Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant[J]. Industrial Crops and Products, 2013, 49(1): 668-674.
  • 9GOUVEIA S C, CAST1LHO P C. Validafion of a HPLC-DAD-ESI/ MS method for caffeoylquinic acids separation, quantification and identification in medicinal Helichrysum species from Macaronesia[J]. Food Research International, 2012, 45(1): 362-368.
  • 10LIN Longze, HARNLY J M. Identification of hydroxycinnamoylquinic acids of arnica flowers and burdock roots using a standardized LC- DAD-ESI/MS profiling method[J]. Journal of Agricultural and Food Chemistry, 2008, 56(21): 10105-10114.

二级参考文献5

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部