摘要
本文研究了非线性方程求解的问题.利用泰勒公式和耦合方法,获得了一种求解非线性方程的加速收敛的七阶迭代改进格式,该格式不需要计算高阶导数,且具有更大的收敛半径,大大提高了计算效率.
In this paper, we study the problem of solving nonlinear equations. By using Taylor formulas and cupling method, we get a novel and robust three-step seventh-order iterative scheme. The contributed without memory method does not need to calculate higher order derivatives and has a large radius of convergence and higher efficiency of calculation.
出处
《数学杂志》
CSCD
北大核心
2015年第5期1017-1025,共9页
Journal of Mathematics
基金
Supported by National Natural Science Foundation of China(U1304106)
关键词
迭代法
非线性方程
扩展指数
效率指数
收敛半径
iterative method
nonlinear equations
extended computational index
efficiency index
convergence radius