期刊文献+

环F_3+vF_3上的循环码与常循环码(英文)

CYCLIC AND CONSTACYCLIC CODES OVER F_3+ vF_3
下载PDF
导出
摘要 本文研究了环F3+v F3上的循环码与常循环码.通过环F3+v F3与域F3上的循环码之间关系,证明了环F3+v F3上循环码是由一个多项式生成的.最后,用类似的方法,得到了环F3+v F3上v-常循环码也是由一个多项式生成的. In this paper, we focus on cyclic and constacyclic codes over the ring F3+v F3(v2=1), which is not a finite chain ring. We study the relationship between cyclic codes over F3+ v F3 and ternary cyclic codes, and prove that cyclic codes over the ring are generated by a polynomial over F3+ v F3. Then, using similar method, we obtain the generator polynomial of v-constacyclic codes.
出处 《数学杂志》 CSCD 北大核心 2015年第5期1115-1126,共12页 Journal of Mathematics
基金 Supported by Scientific Research Foundation of Hubei Provincial Education Department of China(B2013069) the National Science Foundation of Hubei Polytechnic University of China(12xjz14A)
关键词 循环码 常循环码 GRAY映射 生成多项式 cyclic codes constacyclic codes Gray map generator polynomial
  • 相关文献

参考文献12

  • 1Bachoc C. Application of coding Theory to the construction of modular lattices[J]. J. Combin. Theory, Ser. A, 1998, 78:92-119.
  • 2Chapan R, Dougherty S T, Gabort P, Sole P. Self-dual codesover F3 + vF3[J], http://academic. scranton.edu/faculty/doughertysl/sd.htm.
  • 3Hammons A R, Kumar Jr P V, Calderbank A R, Sloane N J A, Sole P. The Z4 linearity of Kerdock, Preparata, Gethals and related codes[J]. IEEE Trans. Inform. Theory, 1994, 40: 301-319.
  • 4Bonnecaze A, Udayu P. Cyclic codes and self-dual codes overF2 + uF2[J]. IEEE Trans. Inform. Theory, 1999, 45: 1250-1255.
  • 5Udayu P, Bonnecaze A. Decoding of cyclic codes over F2 + uF2 [J]. IEEE Trans. Inform. Theory, 1999, 45: 2148-2157.
  • 6Abualrub T, Siap I. Constacyclic codes over F2 + uF2[J]. J. Frank. Inst., 2009, 346:520-529.
  • 7Qian J F, Zhang L, Zhu S X. (1 + u)-constacyclic and cyclic code over F2 + uF2[J]. Applied Mathematics Letters, 2006, 19: 820-823.
  • 8Abualrub T, Siap I. Cyclic codes over the ring Z2 +uZ2 and Z2 +uZ2 +u2Z2[J]. Des. Codes Crypt., 2007, 42: 273-287.
  • 9Yildiz B, Karadeniz S. Linear codes over F2 + uF2 + vF2 + uvF2[J]. Des. Codes Crypt., 2010, 54: 61-81.
  • 10Karadeniz S, Yildiz B. (1 + v)-constacyclic codes over F2 + uF2 + vF2 + uvF2[J]. Journal of the Franklin Institute, 2011, 348(9): 2625-2632.

二级参考文献4

  • 1SHIROMOTO K. A singleton bound for codes over finite rings[J], Journal of Alagebraic Combinatorices,2000,(12): 95-98.
  • 2DOUGHERTY S T, SHIROMOTO K. MDR codes over Zk[J]. IEEE Transactions on Information Theory, 2000,46(1): 265-269.
  • 3SHIROMOTO K. Note on MDS codes over the integers modulo p^m[J]. Hokkaido Math Journal, 2000, 29:119-148.
  • 4DOUGHIERTY S T, HARADA M, SOLE E Self-dual odes over tings and the Chinese remainder theorem[J]. Hokkaido Math Journal, 1999, 28: 253-283.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部