摘要
在齐次Neumann边界条件下,讨论了Gierer-Meinhardt模型的稳态分歧和Hopf分歧.给出了正常数解的稳定性.利用分歧理论、空间分解和隐函数定理研究了系统的单重和二重分歧,并且以d2为分歧参数考察了系统的Hopf分歧,得到了非齐次周期解存在的条件.
The steady-states bifurcations and Hopf bifurcation for a Gierer-Meinhardt model with homogeneous Neumann boundary conditions are considered. The stability of the positive constant solution is discussed. Furthermore, the bifurcations from simple and double eigenvalues are investigated by means of the combination of the simple bifurcation theory, space decomposition and implicit function theorem. Finally, by regarding d2 as a bifurcation parameter, we study the Hopf bifurcation and obtain the conditions of the existence of inhomogeneous periodic solution.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
北大核心
2015年第3期26-32,共7页
Journal of Northeast Normal University(Natural Science Edition)
基金
中央高校基本科研业务费专项资金资助项目(GK2013 02025)
陕西省教育厅专项科研计划项目(14JK1035)
宝鸡文理学院重点科研项目(ZK15039)