期刊文献+

一维双极量子流体动力学等温模型稳态解的唯一性 被引量:1

Uniqueness of stationary solutions to 1-d isothermal bipolar quantum hydrodynamic model
下载PDF
导出
摘要 研究一个耦合的四阶椭圆方程组-δ2/2(uxx+u2x/2)xx+uxx=eu-ev-C(x)+j20(e-2uux)x-j0/τe(e-u)x,-δ2/2(vxx+v2x/2)xx+vxx=eu+ev+C(x)+j21(e-2vvx)x-j1/τi(e-v)x此方程组来源于一维半导体器件中双极量子流体动力学等温稳态模型.在某些条件下利用一些不等式技巧证明了此方程组解的唯一性. The following coupled fourth-order elliptic system is studied: -δ2/2(uxx+u2x/2)xx+uxx=eu-ev-C(x)+j20(e-2uux)x-j0/τe(e-u)x,-δ2/2(vxx+v2x/2)xx+vxx=eu+ev+C(x)+j21(e-2vvx)x-j1/τi(e-v)x The system originates from the 1-d stationary isothermal bipolar quantum hydrodynamic model for semiconductor device. The uniqueness of the solutions to the system is proved under some conditions by using some inequality techniques.
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期33-36,共4页 Journal of Northeast Normal University(Natural Science Edition)
基金 河南省科技厅基础与前沿技术研究计划项目(132300410373) 河南省教育厅科学技术研究重点项目(12A110024) 郑州航空工业管理学院青年科研基金资助项目(2013111001 2014113002 2015113001) 航空科学基金资助项目(2013ZD55006) 河南省高等学校青年骨干教师资助计划项目(2013GGJS-142)
关键词 量子流体动力学模型 稳态解 唯一性 quantum hydrodynamic model stationary solutions uniqueness
  • 相关文献

参考文献4

二级参考文献28

  • 1Sun Yuejuan (Dept.of Math.,Shangqiu Normal University,Shangqiu 476000,Henan) Zheng Xiying (Dept.of Math.and Physics,Yellow River Technical College,Zhengzhou 450052).GLOBAL WEAK SOLUTION TO COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY,VACUUM AND GRAVITATIONAL FORCE[J].Annals of Differential Equations,2008,24(1):34-45. 被引量:3
  • 2I.iang Bo, Zhang Kaijun. Steady-state solutions and asymp- totic limits on the multi-dimensional semiconductor quantum hydrodynamic model[J]. Mathematical Models and Methods in Applied Sciences, 2007, 17(2): 253-275.
  • 3Zhang Guojing, Zhang Kaijun. On the bipolar multi-dimen- sional quantum Euler-Poisson system: The thermal equilibri- um solution and semiclassical limit[-J]. Nonlinear Analysis, 2007, 66: 2218-2229.
  • 4Zhang Guojing, Li Hailiang, Zhang Kaijun. Semiclassicaland relaxation limits of bipolar quantum hydrodynamic model for semiconductors [J]. Journal of Differential Equatios, 2008, 245: 14,33-1453.
  • 5Li Hailiang, Zhang Ouojing, Zhang Kaijun. Algebraic time decay for the bipolar quantum hydrodynamic model [3 1. Mathematical Models and Methods in Applied Sciences, 2008, 18(6): 859-881.
  • 6Zhou Fang, Li Yeping. Existence and some limits of station ary solutions to a one dimensional bipolar Euler Poisson sys tem[J]. Journal of Mathematical Analysis and Applications, 2009, 351: 480-490.
  • 7Naoki T. Existence and uniqueness of stationary solutions to a one-dimensional bipolar hydrodynamic model for semicon- duc'mrs[J]. Nonlinear Analysis, 2010, 73: 779-787.
  • 8Brull, S., Mehats, F. Derivation of viscous correction terms for the isothermal quantum Euler model. Z. Angew. Math. Mech., 90: 219-230 (2010).
  • 9Chen, L., Dreher, M. The viscous model of quantum hydrodynamics in several dimensions. Math. Models Methods AppI. Sci., 17: 1065-1093 (2007).
  • 10Dong, J. Classical solutions to one-dimensional stationary quantum Navier-Stokes equations. J. Math. Pures Appl., 96: 521-526 (2011).

共引文献4

同被引文献16

  • 1TURAEV V. Homotopy field theory in dimension 3 and crossed group-categories[J/OL]. Arxiv.. Math, 200012015-01-18]. arxiv, org/abs/math/0005291.
  • 2TURAEV V. Homotopy field theory in dimension 2 and group-algebras[J/OL]. Arxiv: Math, 1999[2015-01-18]. arxiv, org/ abs/math/9910010.
  • 3TURAEV V. Homotopy quantum field theory[M]. Zurich:European Mathematical Society,2010:1-290.
  • 4TURAEV V. Crossed group-categories[J]. The Arabian Journal for Science and Engineering, 2008,33 (2C) :483-503.
  • 5VIRELIZIER A. Hopf group-coalgebras[J]. Journal of Pure and Applied Algebra, 2002,171:75-122.
  • 6CAENEPEEL S, DE LOMBAERDE M. A categorical approach th Turaev's Hopf group-coalgebras[J]. Communications in Algebra, 2006,34 : 2631-2657.
  • 7WANG S H. Group entwining structures and group coalgebra Galois extensions[J]. Communications in Algebra, 2004,32:3417- 3436.
  • 8WANG S H. Coquasitriangular Hopf group algebras and Drinfel'd co-doubles[J]. Communications in Algebra, 2009,35:77-101.
  • 9WANG S H. Turaev group coalgehras and twisted Drinfeld double[J]. Indiana University Mathematic Journal, 2009,58 (37) : 1395-1417.
  • 10ZUNINO M. Double construction for crossed Hopf coalgebras[J]. Journal of Algebra, 2004,278:43-75.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部