期刊文献+

Probabilistic inference of fatigue damage propagation with limited and partial information 被引量:1

Probabilistic inference of fatigue damage propagation with limited and partial information
原文传递
导出
摘要 A general method of probabilistic fatigue damage prognostics using limited and partial information is developed.Limited and partial information refers to measurable data that are not enough or cannot directly be used to statistically identify model parameter using traditional regression analysis.In the proposed method, the prior probability distribution of model parameters is derived based on the principle of maximum entropy(Max Ent) using the limited and partial information as constraints.The posterior distribution is formulated using the principle of maximum relative entropy(MRE) to perform probability updating when new information is available and reduces uncertainty in prognosis results.It is shown that the posterior distribution is equivalent to a Bayesian posterior when the new information used for updating is point measurements.A numerical quadrature interpolating method is used to calculate the asymptotic approximation for the prior distribution.Once the prior is obtained, subsequent measurement data are used to perform updating using Markov chain Monte Carlo(MCMC) simulations.Fatigue crack prognosis problems with experimental data are presented for demonstration and validation. A general method of probabilistic fatigue damage prognostics using limited and partial information is developed.Limited and partial information refers to measurable data that are not enough or cannot directly be used to statistically identify model parameter using traditional regression analysis.In the proposed method, the prior probability distribution of model parameters is derived based on the principle of maximum entropy(Max Ent) using the limited and partial information as constraints.The posterior distribution is formulated using the principle of maximum relative entropy(MRE) to perform probability updating when new information is available and reduces uncertainty in prognosis results.It is shown that the posterior distribution is equivalent to a Bayesian posterior when the new information used for updating is point measurements.A numerical quadrature interpolating method is used to calculate the asymptotic approximation for the prior distribution.Once the prior is obtained, subsequent measurement data are used to perform updating using Markov chain Monte Carlo(MCMC) simulations.Fatigue crack prognosis problems with experimental data are presented for demonstration and validation.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1055-1065,共11页 中国航空学报(英文版)
关键词 Fatigue damage propagation Maximum relative entropy Partial information Probability updating UNCERTAINTY Fatigue damage propagation Maximum relative entropy Partial information Probability updating Uncertainty
  • 相关文献

参考文献30

  • 1Paris P, Erdogan F. A critical analysis of crack propagation. J Basic Eng 1963;85(4):528-34.
  • 2Forman RG, Kearney V, Engle R. Numerical analysis of crack propagation in cyclic-loaded structures. J Fluids Eng 1967;89(3):459-63.
  • 3McEvily A. On the quantitative analysis of fatigue crack propagation. ASTM STP 1983;811:283-312.
  • 4Janssen M, Zuidema J, Wanhill R. Fracture mechanics. 2nd. New York: Taylor & Francis Group; 2004. p. 1-129.
  • 5Frost N, Pook L, Denton K. A fracture mechanics analysis of fatigue crack growth data for various materials. Eng Fract Mech 1971;3(2): 109-26.
  • 6Clark Jr WG, Hudak Jr SJ. Variability in fatigue crack growth rate testing. ASTM J Test EvaI1975;3(6):454-76.
  • 7Guan X, Jha R, Liu Y. Model selection, updating, and averaging for probabilistic fatigue damage prognosis. Struct SaJ2011;33(3): 242-9.
  • 8Beck JL, Au SK. Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation. J Eng Mech 2002;128(4):380-91.
  • 9Guan X, He J, Jha R, Liu Y. An efficient analytical Bayesian method for reliability and system response updating based on Laplace and inverse first-order reliability computations. Reliab Eng Syst Saf 2012;97(1): 1-13.
  • 10Mosegaard K, Tarantola A. Probabilistic approach to inverse problems. Int Geophys Series 2002;81(A):37-68.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部