摘要
This study investigates the feasibility of using electrochemical machining(ECM) to produce critical aeroengine components from a new burn-resistant titanium alloy(Ti40), thereby reducing costs and improving efficiency relative to conventional mechanical machining.Through this, it is found that an aqueous mix of sodium chloride and potassium bromide provides the optimal electrolyte and that the surface quality of the Ti40 workpiece is improved by using a pulsed current of1 k Hz rather than a direct current.Furthermore, the quality of cavities produced by ECM and the overall material removal rate are determined to be dependent on a combination of operating voltage, electrolyte inlet pressure, cathode feeding rate and electrolyte concentration.By optimizing these parameters, a surface roughness of 0.371 lm has been achieved in conjunction with a specific removal rate of more than 3.1 mm3/A?min.
This study investigates the feasibility of using electrochemical machining(ECM) to produce critical aeroengine components from a new burn-resistant titanium alloy(Ti40), thereby reducing costs and improving efficiency relative to conventional mechanical machining.Through this, it is found that an aqueous mix of sodium chloride and potassium bromide provides the optimal electrolyte and that the surface quality of the Ti40 workpiece is improved by using a pulsed current of1 k Hz rather than a direct current.Furthermore, the quality of cavities produced by ECM and the overall material removal rate are determined to be dependent on a combination of operating voltage, electrolyte inlet pressure, cathode feeding rate and electrolyte concentration.By optimizing these parameters, a surface roughness of 0.371 lm has been achieved in conjunction with a specific removal rate of more than 3.1 mm3/A?min.
基金
sponsored by the National Natural Science Foundation of China the Program for New Century Excellent Talents in University (NCET-12-0627) of China
the Fundamental Research Funds for the Central Universities of China