期刊文献+

铅基(Pb,La)(Zr,Ti)O_3反铁电厚膜微驱动结构的特性测试

Micro-actuator device characteristics study on lead-based antiferroelectric thick films of(Pb,La)(Zr,Ti)O_3
下载PDF
导出
摘要 采用金属醇盐为前驱体的溶胶-凝胶工艺,实现了PLZT反铁电厚膜晶圆级的制备。基于铅锆反铁电材料的相变应变效应和快速响应特性,结合微纳兼容制造关键技术,研制出具有大应变、快响应、低驱动特性的硅基(Pb,La)(Zr,Ti)O3反铁电厚膜微悬臂梁构件。3种激励模式的测试结果表明,定频模式下梁的最大位移和速率相对于扫频模式下高出数倍,且定频模式(Square)更有利于激发反铁电材料相变,使得微悬臂梁驱动构件产生更大的应变和更快的响应速度,为大行程驱动位移和快速响应新型微执行构件的设计提供一种新的技术途径。 Taking the metal alkoxide as a precursor,the wafer grade of(Pb,La)(Zr,Ti)O3(PLZT)anti-ferroelectric thick films were fabricated by the sol-gel process on silicon substrate.Based on the strong field induced strain and the sharp phase switching of anti-ferroelectric materials and combined with key technologies of micronano compatible manufacturing,the microcantilevers was presented with excellent large strain capacity,rapid response speed,low drive voltage.The experimental results of 3excitation modes showed that the maximum displacement and velocity of microcantilevers under the fixed frequency(square)is several times larger than that under the sweep(or scan)frequency.The phase transition of anti-ferroelectric materials were so much more excited underthe fixed frequency(square)than that under the sweep frequency that caused the larger strain capabilities and higher response speed in the micro-cantilevers,which was a new technical approachto design micro-actuators with characteristics of large drive displacementand rapid response.
出处 《功能材料》 EI CAS CSCD 北大核心 2015年第19期19060-19064,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(61401406 51175483 51422510) 中国教育部新世纪优秀人才支持计划资助项目(NCET)
关键词 反铁电厚膜 微悬臂梁 微驱动构件 anti-ferroelectric thick films micro-cantilevers micro-actuators
  • 相关文献

参考文献3

二级参考文献55

  • 1李鹏,李昕欣,王跃林.用于化学气体检测的压阻检测式二氧化硅微悬臂梁传感器[J].传感技术学报,2007,20(10):2174-2177. 被引量:9
  • 2李艳宁,唐洁,饶志军,傅星,胡小唐.微悬臂梁谐振技术检测溶液粘度的研究[J].压电与声光,2005,27(5):572-574. 被引量:2
  • 3Hagleitner C, Hierlemann A, Lange D, et al. Smart single-chip gas sensor microsystem [ J ]. Nature ,2001 (414) :293 -296.
  • 4Howe R T, Muller R S. Resonant micro-bridge vapor sensor[ J]. IEEE Transactions on Electron Devices, 1986(33 ) :499-506.
  • 5Thundat T, Warmack R J, Chen G Y, et al. Thermal and ambientinduced deflections of scanning force microscope cantilevers [ J ]. Applied Physics Letters, 1994 ( 64 ) :2894 -2903.
  • 6Barnes J R, Stephenson R J, Welland M E, et al. Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device [ J ]. Nature, 1994 (372) : 79.
  • 7Yang Jinling,OnoTakahito,Esashi Masayoshi. Mechanical behavior of uhrathin microcantilever [ J ]. Sensors and Actuators, 2000 ( 82 ) : 102 -107.
  • 8Kim B H, Prins F E, Kern D P, et al. Muhicomponent analysis and prediction with a cantilever array based gas sensor[J]. Sensors and Actuators B,2001 (78) : 12 -18.
  • 9Baselt D R, Fruhberger B, Klaassen E, et al. Design and performance of a microcantilever-based hydrogen sensor[J].Sensors and Actuators B,2003(88) :120-131.
  • 10Britton C L,Jones R L,Oden P I,et al. Multiple-input microcantilever sensors[J]. Uhramieroscopy ,2000 ( 82 ) : 17 -21.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部