期刊文献+

一类半空间上分数阶Laplace方程的Liouville定理

Liouville Type Theorem for a Fractional Laplacian in a Half Space
下载PDF
导出
摘要 首先研究了半空间上一类满足Dirichlet边值问题的分数阶Laplace方程与其对应的积分方程解的等价性;然后,基于两个方程解的等价性,运用积分形式的移动平面法证明了积分方程在全局可积条件下的正解的不存在性以及其在局部有界的条件下的Liouville型定理. This paper investigates the Liouville type theorem of a fractional laplacian in a half space. Firstly,we show the equivalence between the differential equation and the integral equation. Based on the equivalence,we use the moving plane meth- od in integral equation to establish the non-existence of positive solutions under the Global Integrability Assumption and a Li- ouville type theorem with Weaker Conditions.
作者 赵帅欣 李静
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2015年第5期1-7,共7页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11271111)
关键词 格林函数 积分方程的移动平面法 不存在性 LIOUVILLE型定理 Green's function moving plane method in integral equation non-existence Liouville type theorem
  • 相关文献

参考文献10

  • 1Podlubny I. Fractional Differential Equations[J]. San Diego: Academic Press,1999.
  • 2Miller K,Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equation[M]. New York[John Wiley, 1993.
  • 3Caffarelli L, Silvestre L. An extension equations related to the fractional[J]. Comm in PDE,2007,32:1245-1260.
  • 4Ma L, Zhao L. Classification of positive solitary solutions of the nonlinear Cboquard equation[J]. Arch. Ration Mech Anal,2010,195: 455-467.
  • 5Dancer E N. On the number of positive solutions of weakly nonlinear elliptic equations whena parameter is large[J]. Proc London Mat Soc, 1986,53 : 429-452.
  • 6Li C, Ma L. Uniqueness of positive bound states to Shr6dinger systems with critical exponents[J]. SIAM J Appl Anal, 2008,40:1049- 1057.
  • 7Chen W X, Li C M, Ou B. Classification of solutions for a system of integral equations[J]. Comm Partial Diff Eq,2005,30:59-65.
  • 8Jin C, Li C. Symmetry of solutions to some systems of integral equations[J]. Proc Amer Math Soc,2006,134(6) :1661-1670.
  • 9Chen W X, Fang Y Q, Yang R. Liouville theorems involving the fractional Laplacian on a half space[J]. Advances in mathematics,2015, 274:167-198.
  • 10Silvestre L. Regularity of the obstacle problem foe a fractional power of the Laplace operator[J]. Comm Pure Appl Math, 2007 (2) :67- 112.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部