期刊文献+

基于灰色关联度的气井主控因素定量描述 被引量:5

The Modeling and Application of the Key Factors of Controlling Production of Gas Well Based on Gray Correlation
下载PDF
导出
摘要 低渗致密气藏老井稳产一直是气田开发关注的焦点。通过对气井生产动态分析挖掘主控因素,有的放矢地采取相应措施,是老井稳产的重要方法与手段。研究与应用表明,在气井影响因素模型表征描述的基础上,灰色关联分析能够及时、准确、定量化地提取气井生产主要影响因素,弥补人工定性分析的不足,为气井稳产工艺措施实施提供了重要的决策支持与效果预测,具有较好的可行性与有效性,为气田智能开发与管理探索了一种新思路与新方法。 Keeping old wells producing stably in low permeability tight gas reservoirs is the key point for gas oil field devel-opment .Dynamic analysis ,as an important way and method ,which can discover the key factor of gas wells to take appro-priate measures ,has been an important focus of attention .Research and application shows that ,based on the model of de-scribing the characterization of the factors affecting gas producing ,the gray correlation analysis is able to extract timely ,ac-curately and quantitatively the main factors affecting gas production ,compensate the lack of artificial qualitative analysis and provide decision support and forecasting process measures for stable production of well ,so it is feasible and effective ,which has explored a new idea and approach for intelligent development and management of gas field .
出处 《工业安全与环保》 北大核心 2015年第9期55-57,共3页 Industrial Safety and Environmental Protection
基金 国家自然科学基金(41272363) 中石化西南油气分公司生产科研基金(9512013Y0514)
关键词 老井稳产 气藏 动态分析 主控因素 灰色关联分析 定量分析 工艺措施 old well producing stably gas reservoirs dynamic analysis key factor grey relational analysis quantita-tive analysis process measures
  • 相关文献

参考文献7

二级参考文献20

  • 1李晓平,龚伟,唐庚,孙万里,程妮.气藏水平井生产系统动态分析模型[J].天然气工业,2006,26(5):96-98. 被引量:12
  • 2张艳玉,聂法健,尉雪梅,宋辉辉.考虑变井筒存储的双重介质凝析气藏气井压力动态分析[J].天然气工业,2007,27(5):91-94. 被引量:1
  • 3蒋泽银,唐永帆,林德建,张亚东,肖普朝,龙顺敏.川西北气矿平落坝气田泡沫排水采气工艺技术研究及应用[J].石油与天然气化工,2007,36(4):324-327. 被引量:12
  • 4Alper Y, Omar J, Mubarak 'S. Object tracking: A survey [J]. ACM Com- puting Surveys, 2006, 38(4) : 1 - 45.
  • 5Han M, Sethiy A, Hua W, et al. A detection-based multiple object track- ing method [ C ]//International Conference of Image Processing. USA: IEEE computer Society Press, 2004,5 : 3065 - 3068.
  • 6Amlampalam M S, Maskell S, Gordon N, et al. A tutorial on particle fil- ters for online nonlinear/non-Ganssian Bayesian tracking [ J ]. IEEE Trans signal processing, 2002, 50(2) :174 - 188.
  • 7Isard M, Blake A. Condensation conditional density propagation for visual tracking [J]. International Journal of Computer Vision, 1998, 29(1):5-28.
  • 8Jain A K. On an estimate of the Bhattacharyya distance [J]. IEEE Trans- actions on Systems, Man and Cybernetics 1976, 6(11 ): 763-766.
  • 9Isard M, Blake A. Condensation-conditional density propagation for visual tracking [ J ]. International Journal of Computer Vision, 1998,29 ( 1 ) : 5 - 28.
  • 10Espionage P, Soto A. Improving the selection and detection of visual land- marks through object tracking[ C ]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops ( CVPRW 08), 2008 : 1-7.

共引文献52

同被引文献100

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部