期刊文献+

基于改进离散粒子群算法构建制造单元

An Improved Discrete PSO-Based Approach for Cell Formation Problem
下载PDF
导出
摘要 在未知最佳分群单元数的情况下,考虑了零件多种可选工艺路径和零件工艺顺序,建立基于最小化零件跨单元移动次数的数学模型.通过引入自适应变异因子,提出一种改进的离散粒子群优化算法能动态地确定分群单元数,极大地减少了算法陷入局部最优解的可能.通过对文献中不同规模的单元构建问题进行求解,结果证明了该方法有效,并且无需预先设定分群单元数即可获得与文献中相同甚至更好的结果. The configuration of manufacturing cell was focused on taking into consideration alternative process routings and operation sequences of parts without predetermined number of cells, and a mathemat ical model was proposed with the objective of minimizing intercellular movements. An automatic clustering approach based on the improved discrete particle swarm optimization was proposed for the cell formation problem (ACPSO-CF). The self-adaptive parameter for mutation was introduced to improve the diversity of particle swarm and determine the best number of ceils automatically. The experimental results verify the effectiveness of the proposed approach on all test problems, which exceeds or matches the quality of the best solutions presented in the literature, without predetermination of the number of cells.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第9期1332-1338,共7页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(51475304) 上海市自然科学基金资助项目(12ZR1414400) 中国博士后科学基金资助项目(2014M561465)
关键词 单元构建 离散粒子群优化算法 可选加工路径 工艺顺序 最佳分群单元数 cell formation discrete particle swarm optimization algorithm alternative process routing operation sequence best number of cells
  • 引文网络
  • 相关文献

参考文献12

  • 1Papaioannou G, Wilson J M. The evolution of cell studies (1997 ture researchE search, 2010, melhodologies based on recent -2008): Review and directions for fu J. European Journal of Operational Re- 206(3) : 509-521.
  • 2赵春伟,吴智铭.一种新的制造单元设计方法[J].上海交通大学学报,1998,32(8):73-76. 被引量:6
  • 3Andre's C, Lozano S. A particle swarm optimization algorithm for part machine grouping[J]. Robotics and Computer-Integrated Manufacturing, 2006, 22 (5-6) : 468- 474.
  • 4Anvari M, Mehrabad M S, Barzinpour F. Machine part cell formation using a hyhrid particle swarm opti- mizationEJ ]. International Journal of Advanced Manu- facturing Technology, 2010, 47(5-8): 745 -754.
  • 5Kao Y C, Chen C C. Automatic clustering for gener alised cell formation using a hybrid particle swarm op timisation[J]. International Journal of Production Re- search, 2014, 52(12): 3466-3484.
  • 6Won Y Y, Lee K C. Group technology cell formation considering operation sequences and production vol- umes [J]. International Journal of Production Re- search, 2001, 39(13): 2755- 2768.
  • 7Kao Y, IAnC H. A PS() based approach to cell for marion problems with alternative process routings E J l- International Journal of Production Research, 2012, 50(15): 4075-4089.
  • 8Saeidi S, Solimanpur M, Mahdavi l, et al. A multi- objective genetic algorithm for solving cell formation problem using a fuzzy goal programming approach [J]. International Journal of Advanced Manufacturing Technology, 2014, 70(9-12): 1635-1652.
  • 9Eberhart R C, Shi Y H. Particle swarm optimiza- tion: Developments, applications and resourcesC]// Proceedings of the 2001 Congress on Evolutionary Computation. Seoul: IEEE, 2001:81 -86.
  • 10Sofianopoulou S. Manufacturing cells design with al- ternative process plans and/or replicate machlncs[J]. International Journal of Production Research, 1999, 37(3) : 707-720.

二级参考文献1

  • 1Song S,Int J Prod Res,1992年,30卷,12期,2737页

共引文献5

;
使用帮助 返回顶部