期刊文献+

大气湍流下带有跟踪误差的空间相干光通信性能分析 被引量:19

Performance Analysis of Free Space Coherent Optical Communication in Atmosphere Turbulence with Tracking Error
下载PDF
导出
摘要 在星地链路的空间相干光通信系统中,大气湍流、跟踪误差会影响系统的混频效率和误码率.根据混频效率公式分别推导了大气湍流强度和跟踪误差与系统混频效率的关系并进行仿真计算.计算结果表明,混频效率随跟踪误差和大气湍流强度的增加而降低,其中当跟踪误差大于12μrad或湍流强度超过10-16时,混频效率趋近零.建立了大气湍流下带跟踪误差的光混频效率及误码率的数学模型,并计算了不同情况下的混频效率.在跟踪误差小于2μrad时大气湍流是混频效率的主要影响因素,当跟踪误差继续增大时跟踪误差起主导作用.根据传统相干光通信系统参量取值估算得最大混频效率约为67.8%,当误码率为10-9时系统接收灵敏度为17photon/bit. In the free space coherent optical communication system of satellite-ground link,atmosphere turbulence and tracking error will affect the mixing efficiency and the bit error rate.According to the mixing efficiency formula,both the relationship between system mixing efficiency and atmosphere turbulence intensity and the relationship between system mixing efficiency and tracking error were derived and simulatied.The results show that the mixing efficiency will decrease with the increasing of tracking error and atmosphere turbulence intensity.When the tracking error is greater than 12μrad or turbulence intensity exceeds 10-16,the mixing efficiency is close to 0.An optical mixing efficiency model and a bit error rate model were built in atmosphere turbulence with tracking error,and the homodyne efficiency with different conditions was calculated.Atmosphere is the significant factor of mixing efficiency when tracking error is less than 2 μrad.Then,the tracking error will be as the leading factor with it increasing.According to the reference values of traditional coherent communication system,the maximum of mixing efficiency is about 67.8%,and the system receiving sensitivity is 17photon/bit when the error rate is 10-9.
出处 《光子学报》 EI CAS CSCD 北大核心 2015年第8期50-55,共6页 Acta Photonica Sinica
基金 国家自然科学基金重大研究计划(No.91438204)资助
关键词 空间相干光通信 混频效率 跟踪误差 大气湍流 误码率 Free space coherent optical communication Tracking error Atmosphere turbulence Mixing efficiency Bit error rate
  • 相关文献

参考文献21

二级参考文献114

共引文献134

同被引文献176

  • 1丁涛,许国良,张旭苹,陈佐龙.空间光通信中平台振动对误码率影响的抑制[J].中国激光,2007,34(4):499-502. 被引量:15
  • 2Kong L, Xu W, Hanzo L, et al. Performance of a free space optical relay-assisted hybrid RF/FSO system in generalized M-distributed channels [J]. Photonics Jour- naI,IEEE,2015,7(5) :7903319-7903319.
  • 3Ren Y, Wang 7, Xie G,et al. Free-space optical communi- cations using orbital-angular-momentum multiplexing com- bined with MIMO-based spatial multiplexing [J]. Optics Letters, 2015,40(18) : 4210-4213.
  • 4Abou-Rjeily C, Slim A. Cooperative diversity for free- space optical communications: transceiver design and performance analysis[J]. Communications, IEEE Transac- tions on,2011,59(3) :658-663.
  • 5Karimi M,Nasiri-Kenari M. BER analysis of cooperative systems in free-space optical networks [J]. Journal of Lightwave Technology, 2009,27(24) : 5639-5647.
  • 6Aghajanzadeh S M, Uysal M. Multi-hop coherent free- space optical communications over atmospheric turbu- lence channels[J]. IEEE Transactions on Communica- tions, 2011,59(6) : 1657-1663.
  • 7Wang J Y,Wang J B, Chen M, et al. Outage analysis for relay-aided free-space optical communications over tur- bulence channels with nonzero boresight pointing errors [J]. IEEE Photonics Journal, 2014,6 ( 4 ) : 1-15.
  • 8Peppas K P, Stassinakis A N, Nistazakis H E,et al. Ca- pacity analysis of dual amplify-and-forward relayed free- space optical communication systems over turbulence channels with pointing errors[J]. Journal of Optical Com- munications and Networking, 2013,5(9) : 1032-1042.
  • 9Zedini E,Alouini M S. Multihop relaying over IM/DD FSO systems with pointing errors [J]. Journal of Lightwave Technology, 2015, (99) : 1.
  • 10Kazemlou S, Hranilovic S, Kumar S. All-optical multihop free-space optical communication systems[J]. Journal of L ightwave Technology, 2011,29 ( 18 ) : 2663 -2669.

引证文献19

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部