期刊文献+

一种基于FCOWA-ER的SVM多分类方法 被引量:3

A multi-class SVM based on FCOWA-ER
原文传递
导出
摘要 支持向量机(SVM)在处理多分类问题时,需要综合利用多个二分类SVM,以获得多分类判决结果.传统多分类拓展方法使用的是SVM的硬输出,在一定程度上造成了信息的丢失.为了更加充分地利用信息,提出一种基于证据推理-多属性决策方法的SVM多分类算法,将多分类问题视为一个多属性决策问题,使用证据推理-模糊谨慎有序加权平均方法 (FCOWA-ER)实现SVM的多分类判决.实验结果表明,所提出方法可以获得更高的分类精度. Multiple bi-class SVMs are used together to obtain the final decision when the support vector machine(SVM) is applied to multi-class classification problems. The conventional methods of applying the SVM to multiple classification tasks are all based on the hard output of SVM, which can bring the loss of information to some extent. Therefore, a multi-class SVM based on an evidential reasoning based multiple attribute decision approach is proposed to use more information. The multi-class classification problem is modelled as a multi-criteria decision making problem. Then a fuzzycautious OWA(ordered weighted averaging) approach with evidential reasoning(FCOWA-ER) is used to implement multiclass classification and obtain the final decision. The simulation results show that the method proposed has better accuracy compared with conventional methods.
出处 《控制与决策》 EI CSCD 北大核心 2015年第10期1773-1778,共6页 Control and Decision
基金 国家973计划项目(2013CB329405) 国家自然科学基金项目(61104214 61203222) 陕西省科技计划项目(2013KJXX-46) 教育部博士点基金项目(20120201120036) 中央高校基本科研业务费专项资金项目(xjj2012104 xjj2014122)
关键词 支持向量机 DS证据理论 多属性决策 support vector machine DS evidence theory multi-criteria decision making
  • 相关文献

参考文献18

  • 1Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 138-154.
  • 2Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995,20(3): 273-297.
  • 3Scholkopf B, Smola A J, Williamson R C, et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207-1245.
  • 4Suykens J A K, Vandewalle J. Least square support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
  • 5邢永忠,吴晓蓓,徐志良.基于柯西分布加权的最小二乘支持向量机[J].控制与决策,2009,24(6):937-940. 被引量:7
  • 6Lin C F, Wang S D. Fuzzy support vector machine[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 7温祥西,孟相如,马志强.基于双重支持向量机的网络故障诊断[J].控制与决策,2013,28(4):506-510. 被引量:9
  • 8Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Trans on Neural Networks, 2002,13(2): 415-425.
  • 9Takahashi F, Abe S. Decision-tree-based support vector machines[C]. The 10th Int Conf on Neural Information Processing. Singapore: IEEE Press, 2002: 1418-1422.
  • 10Platt J C, Cristianini N. Large margin DAGs for multi class classification[C]. Advances in Neural Information Processing Systems. Denver: MIT Press, 2000, 12: 547- 553.

二级参考文献19

  • 1孙建成,张太镒,刘枫.Modelling of chaotic systems based on modified weighted recurrent least squares support vector machines[J].Chinese Physics B,2004,13(12):2045-2052. 被引量:3
  • 2Suykens J A K, Van Gestel T. De Brabanter J, et al. Least squares support vector machines[M]. Singapore:World Scientific Publishing Co Pte, 2002.
  • 3Suykens J A K, Branbamer J K, Lukas L, et al, Weighted least squares support vector machine: Robustness and sparse approximation[ J ]. Neuro Computing, 2002, 48(1): 85-105.
  • 4Chen A J, Song Z H, Li P. Soft sensor modeling base on DICA-SVR[C]. Advances in Intelligent Computing, PT 1. Hefei, 2005, 3644: 868-877.
  • 5王连详,方德植,张鸣镛,等.数学手册[M].北京:高等教育出版社,2004:798-801.
  • 6Jesper Grcnb~ek, Hans-Peter Schwefel, Andrea Ceccarelli, et al. Improving robustness of network fault diagnosis touncertainty in observations[C]. IEEE Int Symposium on Network Computing and Applications. Cambridge, 2010: 229-232.
  • 7Guo Jiang-wei, Wu Xiao-ping, Ye Qing. Network fault diagnosis based on rough set-support vector machine[C]. ICCASM 2010. Taiyuan, 2010, 14: 314-315.
  • 8Zhang Li, Meng Xiang-ru, Zhou Hua. Network fault diagnosis using hierarchical SVMs based on kernel method[C]. WKDD2009. Moscow: IEEE Press, 2009: 753-756.
  • 9Jayadeva, Khemchandai R, Chandra S. Twin support vector machines for pattern classification[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
  • 10Tang Xian-lun, Zhuang Ling, Cai Jun, et al. Multi-fault classification based on support vector machine trained by chaos particle swarm optimization[J]. Knowledge-Based Systems, 2010, 23(5): 486-490.

共引文献14

同被引文献28

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部