期刊文献+

一种基于属性关系的特征选择算法 被引量:3

A feature selection algorithm based on relationship between attributes
原文传递
导出
摘要 对于包含大量特征的数据集,特征选择已成为一个研究热点,能剔除无关和冗余特征,将会有效改善分类准确性.对此,在分析已有文献的基础上,提出一种基于属性关系的特征选择算法(NCMIPV),获取优化特征子集,并在UCI数据集上对NCMIPV算法进行性能评估.实验结果表明,与原始特征子集相比,该算法能有效降低特征空间维数,运行时间也相对较短,分类差错率可与其他算法相比,在某些场合下性能明显优于其他算法. Feature selection has become a heated research issue for datasets that contain large numbers of features and has the ability to remove irrelevant and redundant features and improve classification accuracy in an effective fashion. A feature selection algorithm based on relationship between attributes named NCMIPV is proposed to acquire the optimized feature subset based on the analysis of existing relevant literatures, and the performance of NCMIPV on UCI datasets is evaluated.Experiment results show that compared with original datasets, this algorithm tends to shrink the dimension of feature space effectively in a comparatively shorter length of time. Moreover, the misclassification rate appears to rival other algorithms.Overall performance of the proposed algorithm is obviously superior to its counterparts in certain situation.
出处 《控制与决策》 EI CSCD 北大核心 2015年第10期1903-1906,共4页 Control and Decision
关键词 特征选择 属性关系 分类 feature selection attribute relationship classification
  • 相关文献

参考文献13

  • 1范雪莉,冯海泓,原猛.基于互信息的主成分分析特征选择算法[J].控制与决策,2013,28(6):915-919. 被引量:105
  • 2Guyon I, Elisseeff A. An introduction to variable and feature selection[J]. J of Machine Learning Research, 2003, 3: 1157-1182.
  • 3Yu L, Liu H. Efficient feature selection via analysis of relevance and redundancy[J]. J of Machine Learning Research, 2004, 5: 1205-1224.
  • 4Dash M, Liu H. Feature selection for classification[J]. Intelligent Data Analysis, 1997, 1(3): 131-156.
  • 5Dash M, Liu H, Motoda H. Consistency based feature selection[C]. Knowledge Discovery and Data Mining. Berlin: Springer, 2000: 98-109.
  • 6姚旭,王晓丹,张玉玺,权文.特征选择方法综述[J].控制与决策,2012,27(2):161-166. 被引量:207
  • 7Kira K, Rendell L A. The feature selection problem: Traditional methods and a new algorithm[C]. Proc of the 9th National Conf on Artificial Intelligence. San Jose, 1992: 129-134.
  • 8Kononenko I. Estimation attributes: Analysis and extensions ofREL IEF[C]. Proc of the 1994 European Conf on Machine Learning. Catania: Springer Verlag, 1994: 171-182.
  • 9Jain A K, Duin R P W, Mao J. Statistical pattern recognition: A review[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4-37.
  • 10Battiti R. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Trans on Neural Networks, 1994,5(4): 537-550.

二级参考文献66

  • 1Li G-Z, Yang J Y. Feature selection for ensemble learning and its application[M]. Machine Learning in Bioinformatics, 2008: 135-155.
  • 2Sheinvald J, Byron Dom, Wayne Niblack. A modelling approach to feature selection[J]. Proc of 10th Int Conf on Pattern Recognition, 1990, 6(1): 535-539.
  • 3Cardie C. Using decision trees to improve case-based learning[C]. Proc of 10th Int Conf on Machine Learning. Amherst, 1993: 25-32.
  • 4Modrzejewski M. Feature selection using rough sets theory[C]. Proc of the European Conf on Machine ,Learning. 1993: 213-226.
  • 5Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data[J]. J of Bioinformatics and Computational Biology, 2005, 3(2): 185-205.
  • 6Francois Fleuret. Fast binary feature selection with conditional mutual information[J]. J of Machine Learning Research, 2004, 5(10): 1531-1555.
  • 7Kwak N, Choi C-H. Input feature selection by mutual information based on Parzen window[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671.
  • 8Novovicova J, Petr S, Michal H, et al. Conditional mutual information based feature selection for classification task[C]. Proc of the 12th Iberoamericann Congress on Pattern Recognition. Valparaiso, 2007: 417-426.
  • 9Qu G, Hariri S, Yousif M. A new dependency and correlation analysis for features[J]. IEEE Trans on Knowledge and Data Engineering, 2005, 17(9): 1199- 1207.
  • 10Forman G. An extensive empirical study of feature selection metrics for text classification[J]. J of Machine Learning Research, 2003, 3(11): 1289-1305.

共引文献308

同被引文献22

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部