期刊文献+

一种传统民居遥感提取方法 被引量:2

Traditional residence extraction from high-resolution imagery based on morphological building index and texture
原文传递
导出
摘要 针对基于地物光谱统计特征的建筑物提取方法由于存在较大的同物异谱现象导致提取结果不满足要求的问题,该文提出了一种基于形态学建筑物指数并顾及纹理特征的遥感提取方法。该方法综合考虑传统民居在高分辨率遥感影像上的光谱、形态和纹理特征,首先利用形态学建筑物指数法提取建筑,并使用最小矩形长宽比和像元个数区分道路和零星地物,而后利用Contourlet变换和谱直方图相似性计算进行纹理甄别,实现传统民居的遥感识别和提取。为了验证该方法,选取湖南省常宁市庙前镇中田村QuickBird影像进行试验,结果表明该方法能够获得较高精度的提取结果,整体精度为71.54%,影响提取精度的关键原因为损毁严重的建筑物光谱特征与目标图像纹理相差较大。 Remote sensing is one of potential technologies that can be used to obtain traditional resi- dence distribution from imagery, and extraction of traditional residence base remote sensing imagery is an important subject in human geography. A new method based on building morphological index and texture characters was proposed, and it combined features including spectral, morphology and texture. Based on this method, building pixels were firstly extracted using morphological building index algorithm~ then u- sing ratio between length and width and number of pixels of minimum boundary rectangle to get rid of road and partial pixels; finally, the contourlet transform algorithm and histogram of frequency spectrum were used to recognize the traditional residence pixels. In order to invalid this method, an experimental study was conducted using Quickbird imagery, whieh was located at Zhongtian village at Zhongtian town in Changning county of Hunan province. The result showed that accuracy of this method was satisfied with 71.54%, and the key factor affecting result accuracy was that omit of pixels which located at destroyed traditional residence.
出处 《测绘科学》 CSCD 北大核心 2015年第10期93-97,共5页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41471118 41171122) 教育部人文社科项目(11YJCZH255 10YJAZH015) 湖南省高校创新平台开放基金项目(14k015) 湖南省重点实验室开放项目 湖南省大学生研究性学习和创新性实验计划项目(湘教通〔2014〕248号)
关键词 传统民居提取 形态学建筑物指数 CONTOURLET变换 高分辨率影像 extraction of traditional residence morphological building index Contourlet transform high-resolution imagery
  • 相关文献

参考文献16

  • 1刘沛林,刘春腊,邓运员,申秀英,李伯华,胡最.中国传统聚落景观区划及景观基因识别要素研究[J].地理学报,2010,65(12):1496-1506. 被引量:240
  • 2FUALVEL M,TARABALKA Y,BENNEDIKTSSON J A,et al.Advances in Spectral-spatial Classification of Hyper-spectral Images[C]//Proceedings of IEEE,2013,101(3):652-675.
  • 3胡荣明,黄小兵,黄远程.增强形态学建筑物指数应用于高分辨率遥感影像中建筑物提取[J].测绘学报,2014,43(5):514-520. 被引量:48
  • 4JIN X,DAVIS C H.Automated Building Extraction from High-resolution Satelite Imagery in Urban Areas Using Structural,Contextual,and Spectral Information[J].EURASIP Journal on Applied Signal Processing,2005(14):2196-2206.
  • 5谭衢霖.高分辨率多光谱影像城区建筑物提取研究[J].测绘学报,2010,39(6):618-623. 被引量:54
  • 6LEE D S,SHAN J,BETHEL J S.Class-guided Building Extraction from Ikonos Imagery[J].Photogrammetric Engineering&Remote Sensing,2003,69(2):153-150.
  • 7HUANG X,ZHANG L.An SVM Ensemble Approach Combing Spectral,Structural,and Semantic Features for the Classification of High-resolution Remotely Sensed Imagery[C]//IEEE Transaction on Geoscience and Remote Sensing,2013,51(1):257-272.
  • 8HUANG X,ZHANG L,LI P.Classification and Extraction of Spatial Features in Urban Areas Using High Resolution Multispectral Imagery[C]//IEEE GeoScience Remote Sensing Letter,2007,4(2):260-264.
  • 9张志伟,刘志刚.利用既有知识渐近数学形态学提取LiDAR数据中道路信息方法研究[J].测绘科学,2010,35(4):154-156. 被引量:3
  • 10FAUVEL M,BENEDIKTSSON J A,CHANUSSOT J,et al.Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles[C]//IEEE Transaction on GeoScience and Remote Sensing,2008,46(11):3804-3814.

二级参考文献71

共引文献368

同被引文献40

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部