期刊文献+

电离层异常状态下的自适应平滑滤波算法及性能分析 被引量:4

Analysis on the Performance of the Adaptive Smoothing Filter Algorithm at Ionosphere Anomaly State
下载PDF
导出
摘要 卫星导航星基增强和地基增强系统用户终端采用相位平滑伪距的方法,以提高定位精度。通常平滑窗口时间为100 s,这在正常情况下是适合的;但在电离层发生波动情况下,采用这种平滑窗口会使得定位解算结果产生偏差。针对这个问题,采用基于码载偏离度实时估计的方法,自适应确定相位平滑伪距窗口时间,并对该算法的性能进行了计算分析。分析结果表明:基于码载偏离度实时估计的自适应平滑滤波算法能够计算并确定最佳相位平滑时间。该方法相对于传统的100 s平滑时间能够有效提高定位精度,并且避免滤波发散。 Carrier smoothing code algorithm is widely applied in SBAS and GBAS receivers to improve the position accuracy, and the smoothing window was 100 seconds in general. It was a suitable method for most cases, but the position error may be very large at ionosphere anomaly state. This problem was focused and studied in the paper, a new method based on cartier smoothing code real-time estimating at ionosphere anomaly state was introduced, the smoothing window was adaptively estimated, and the performance using the new method was analyzed. The result indicates that the adaptive smoothing filter algorithm can calculate the best smoothing window, improve the position accuracy and avoid the filter divergence.
出处 《测绘科学技术学报》 CSCD 北大核心 2015年第4期331-335,共5页 Journal of Geomatics Science and Technology
基金 国家自然科学基金项目(41304031 41374038)
关键词 全球导航卫星系统 星基增强系统 地基增强系统 相位平滑伪距 电离层异常 自适应滤波 GNSS SBAS GBAS carrier smoothing code ionosphere anomaly adaptive filter
  • 相关文献

参考文献9

  • 1PARKINSON B W, SPILKER J J. Global Positioning System:Theory and Applications [ C ] // AIAA. Washington, DC,1996;485-516.
  • 2LUO M. LAAS Ionosphere Spatial Gradient Threat Model andImpact of LGF and Airborne Monitoring[C] //Proceedings ofthe ION GNSS. Portland, OR ,2003 : 2255-2274.
  • 3WALTER T. The Effects of Laj^e Ionospheric Gradients on Sin-gle Frequency Airborne Smoothing Filter for WAAS and LAAS[C] //Proceedings of the ION NTM. San Diego, CA, 2004:.103-109.
  • 4DATTABARUA S,WALTER T, PULLEN S. Using WAASIonospheric Data to Estimate LAAS Short Baseline Gradients[C]//Proceedings of ION NTM. San Diego, CA, 2002:523-530.
  • 5YANG YUANXI. Adaptively Constrained Kalman Filtering forNavigation Applications[ J]. Survey Review,2011,43(3) :370-380.
  • 6赵琳,李亮,黄卫权.自适应卡尔曼滤波在载波相位平滑伪距中的应用[J].哈尔滨工程大学学报,2010,31(12):1636-1641. 被引量:18
  • 7王刚.广域差分GPS系统的研究[D].郑州:信息工程大学,2001:47-54.
  • 8SUZUKI K, PILLEN S, ENGE P, et al. Evaluation of Dual-Frequency GBAS Performance Using Data from Public ReceiverNetworks[ C ] // Proceedings of ION NTM. Savigation, OR,2010:2592-2602.
  • 9DO-229D. Minimum Operational Performance Standards forGlobal Positioning System/Wide Area Augmentation SystemAirborne Equipment[S]. Washington DC: RTCA,2006.

二级参考文献11

  • 1岳晓奎,袁建平.一种基于极大似然准则的自适应卡尔曼滤波算法[J].西北工业大学学报,2005,23(4):469-474. 被引量:26
  • 2MOHAMED A,SCHWARZ K.Adaptive Kalman filtering for INS/GPS[J].Journal of Geodesy,1999,73(4):193-203.
  • 3BROWN R G..Introduction to random signals analysis and Kalman filtering[M].New York:John Wiley and Sons,1983:98,302.
  • 4GELB A.Applied optimal filtering[M].MIT Press,1974:16.
  • 5ZARCHAN P.Fundamentals of Kalman filtering-a practical approach[M].2nd ed.AIAA,2005:171-191.
  • 6SIMON D.Optimal state estimation:Kalman,H∞ and nonlinear approaches[M].New York:John Wiley and Sons,2006:312-313.
  • 7MEHRA R.Approaches to adaptive filtering[J].IEEE Trans on Automatic Control,1972,17(5):693-698.
  • 8POORE A B,Slocumb B J,Suchomel B J,et al.Batch maximum likelihood (ML) and maximum a posteriori (MAP) estimation with process noise for tracking applications[C] // Signal and Data processing of Small Targets 2003.Belligham,WA,2003:188-199.
  • 9PARK B,SOHNA K,KEE C.Optimal Hatch filter with an adaptive smoothing window width[J].Journal of The Institute Navigation,2008,61(3):435-454.
  • 10KIM E,WALTER T,POWELL J D.Adaptive carrier smoothing using code and carrier divergence[C] // ION NTM 2007.San Diego,CA,2007:141-152.

共引文献17

同被引文献41

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部