期刊文献+

慢波结构加工精度对太赫兹表面波振荡器的性能影响 被引量:1

Effect of Fabrication Precision of Slow Wave Structure on Performance of Terahertz Surface Wave Oscillator
下载PDF
导出
摘要 随着频率的升高,慢波真空电子器件中慢波结构的尺寸迅速缩小。为给太赫兹波段器件的设计和加工提供指导,研究了慢波结构加工精度对0.34 THz过模表面波振荡器的性能影响。采用小信号理论和自行研制的全电磁粒子模拟软件UNIPIC,模拟分析了矩形波纹慢波结构的周期、深度和宽度等参数在设计值附近变化时,热腔色散曲线和输出脉冲的频率、功率、起振时间及脉宽等关键参数的变化。结果表明:器件工作点对慢波结构的尺寸精度比较敏感,使得输出太赫兹脉冲的特征产生较大波动;10%的深度和周期公差将导致器件没有输出,宽度则容许近20%的加工公差。最后采用微细电火花工艺给出了不锈钢慢波结构的加工实例,并讨论了提高慢波结构加工精度的方法。 The influence of the fabrication precision of the rectangularly corrugated, overmoded slow-wave-structure (SWS) ,such as the period, depth and width of the corrugated structure, on the characteristics of the terahertz suri^tce wave oscillator (SWO), including but not limited to the dispersion, the frequency, power, width and start-up time of the pulsed radiation, was empirically approximated, mathematically modeled, theoretically analyzed in small-signal theory of SWO, and numerically simulated with full electromagnetic particle-in-cell (PIC) code UNIPIC. The simulated results show that the dimension precision of SWS significantly affects the working point of SWO and accouts for the fairly large fluctua- tion of the terahertz pulsed output. To be specific, 10% tolerances of the dpeth and period completely eliminate the out- put;whereas 20% tolerance of the width little affects the output. A prototyped stainless-steel SWS was sucessfully fabri- cated by mireo-electrical discharge machining (miero-EDM).
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2015年第9期1059-1063,共5页 Chinese Journal of Vacuum Science and Technology
基金 国家高技术研究发展计划资助项目
关键词 慢波结构 太赫兹 过模 加工精度 SWS, Terahertz, Overmoded, Manufacturing Precision
  • 相关文献

参考文献18

二级参考文献156

  • 1冯进军,廖复疆,朱敏,闫铁昌.微型真空电子器件技术研究[J].真空电子技术,2005,18(6):8-16. 被引量:5
  • 2刘盛纲.太赫兹科学技术的新发展[J].中国基础科学,2006,8(1):7-12. 被引量:189
  • 3来国军,刘濮鲲.W波段二次谐波回旋行波管放大器的模拟与设计[J].物理学报,2007,56(8):4515-4522. 被引量:6
  • 4Indranath M,Romola D C.Backward wave oscillator based THz spectroscopy,diatomic formalism and optically pumped lasers[J].International Journal of Infrared and Millimeter Waves,2003,24(8):1255-1273.
  • 5Ogawa I,Idehara T,Ui M,et al.Stabilization and modulation of the output power of submillimeter wave gyrotron[J].Fusion engineering and design,2001,53:571-576.
  • 6Siegel P H. Terahertz technology. IEEE Trans. on Microwave Theory and Techniques, 2002, 50(3): 910-928.
  • 7Adri D and Chiko O. Terahertz-wave sources and imaging applications. Institute of physics publishing. Measurement Science & Technology, 2006, 17(11): 161-174.
  • 8Michael S. Terahertz technology: devices and applications. Proceeding of ESSCIRC, Grenoble, France, 2005: 13-21.
  • 9Carr G L, Martin M C, and Mckinney W R. High power terahertz radiation from relativistic electrons. Nature, 2002, 420(14): 153-156.
  • 10Liu Shenggang, Yan Yang, and Zhu Dajun, et al.. The possible contribution of vacuum electronics to THz radiation sources. IEEE International Conference on Vacuum Electronics. Korea, 2003, 4: 357-358.

共引文献64

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部