期刊文献+

基于PCA算法的SAR图像舰船目标长宽特征提取 被引量:2

Ship's Feature Extraction from SAR Image based on PCA
下载PDF
导出
摘要 随着SAR图像成像技术的不断发展,几何特征被广泛应用在目标识别中,长宽特征因其简单直观、效率高、易于提取等优势,常被作为船只类型的初始判定,针对SAR图像舰船目标长宽特征提取问题,提出一种新的方法。首先通过水平集以及形态学方法获得预处理后的目标图像,利用PCA算法获取SAR图像舰船目标的长轴,结合最小二乘椭圆拟合方法获取舰船目标的短轴,最终得到舰船目标的长宽特征。通过实测SAR图像处理结果表明,该方法能够在背景杂波干扰下,抑制相干斑噪声的影响,提高了长宽提取的精度,是一种有效的舰船目标长宽特征提取方法。 In this paper, a length and width feature extraction method for a ship target in SAR images is proposed. Firstly, the SAR images are segmented by the level sets. The domain elimination method is adopted for the segmented images to remove clutter in the next step. Consequently, the slice image of target is obtained. Then, the PCA method is used to obtain the long axis of the ship in SAR image, and the ellipse fitting method is applied to get short axis of the ship target. Thus, the feature information of the ships including length and width is obtained. Experimental results illustrate that the proposed method can extract the length and width feature of a ship target in SAR images effectively and accurately. Meanwhile, it can weaken the influence of speckle noise and background clutter in SAR images.
出处 《船电技术》 2015年第9期1-5,共5页 Marine Electric & Electronic Engineering
基金 国家自然科学基金项目资助(61179016)
关键词 SAR图像 水平集 PCA 椭圆拟合 特征提取 SAR image level sets PCA ellipse fitting feature extraction
  • 相关文献

参考文献7

  • 1R. C. Gonzalez and R. E. Woods. Digital image processing[M]. Beijing: Publishing House of Electronics Industry, 2002:75-146.
  • 2F. Askari and B. Zerr. An automatic approach to ship detection in spaceborne synthetic aperture radar imagery: An assessment of ship detection capability using RADARSAT[R]. Italy: SACLANT Undersea Research Centre, 2000.
  • 3高贵,匡纲要,李德仁.高分辨率SAR图像分割及目标特征提取[J].宇航学报,2006,27(2):238-244. 被引量:18
  • 4吴樊,王超,张波,张红,田小娟.SAR图像船只分类识别研究进展[J].遥感技术与应用,2014,29(1):1-8. 被引量:10
  • 5Tian Xiaojuan, Wang Chao, Zhang Hong, Wu Fan. Extraction and analysis of structural features of ships in high resolution SAR images[C]. IEEE CIE International Conference on Radar. 2011,1:630-633.
  • 6Gu Dandan and Xu Xiaojian. Multi-feature extraction of ships from SAR images[C]. IEEE Image and Signal Processing(CISP), 2013,1:454-458.
  • 7T. F. Chan, and L. A. Vese. Active contours without edges[J].IEEE Transactions on image processing, Feb 2001, 10(2): 266-277.

二级参考文献74

  • 1冷家旭,黄惠明,龙方.基于高分辨距离像的目标识别技术发展现状与趋势[J].飞行器测控学报,2010,29(3):79-83. 被引量:5
  • 2韩昭颖,种劲松.极化合成孔径雷达图像船舶目标检测算法[J].测试技术学报,2006,20(1):65-70. 被引量:8
  • 3Bhanu B,Dudgeon D E,Zelnio E G,et al.Introduction to the special issue on automatic target detection and recognition[J].IEEE Trans on Image Processing,1997,16(1):1-6
  • 4Ross T D.SAR ATR:so what's the problem? An MSTAR perspective[J].SPIE,1999,3721:662-672
  • 5Charles H,Fosgate,Hamid Krim,et al.Multiscale segmentation and anomaly enhancement of SAR imagery[J].IEEE Trans on Image Processing,1997,6(1):7-20,January 1997
  • 6Choi H,Richard G,Baraniuk.Multiscale image segmentation using wavelet-domain hidden markov models[J].IEEE Trans on Image Processing,2001,10(9):1309-1321
  • 7Cook R,McConnell I.MUM(Merge Using Moments) segmentation for SAR images[J].SPIE,1994,2316:92-103
  • 8Robert A,Weisenseel W,Clem K,et al.Markov random field segmentation methods for SAR target chips[J].SPIE 1999,3721:102 -108
  • 9Robert A,Weisenseel W,Clem K,et al.MRF-Based Algorithms for Segmentation of SAR Images[A].The Proceeding of the 1998 International Conference on Image Processing[C].Paris:IEEE,1998,770-774
  • 10Steven H,Guillermo S,Allen T.Knowledge-based segmentation of SAR data with learned priors[J].IEEE Trans Image Processing,2000,9(2):215-219

共引文献25

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部